Evaluation of Herbicide Programs for the Termination of Cover Crop Species in the Spring
Materials and Methods

General: Identical field experiment conducted in Columbia, MO in 2013, 2014 and 2015

Planting Dates: September 11, 2012; September 11 2013 and September 13, 2014

Termination Dates: Early April and early May each year

Seeding Rates (lbs/A):

- Wheat 120
- Cereal Rye 110
- Italian rye grass 25
- Oats 70
- Crimson Clover 30
- Austrian Winter Pea 50
- Hairy Vetch 30
- Cereal Rye + Hairy Vetch 70 + 30
Some species will winter kill....

Tillage Radish 12/3/2013
Columbia, Missouri

© Kevin Bradley, Univ. Missouri
Influence of Herbicide Treatments and Application Timings on the Control of a Wheat Cover Crop (results averaged across 3 years)

- Early Timing (early April)
- Late Timing (early May)

- 28 ozs Roundup
- 28 ozs Roundup + 1 pt 2,4-D
- 28 ozs Roundup + 16 ozs Clarity
- 28 ozs Roundup + 1 oz Sharpen
- 28 ozs Roundup + 1 qt Aatrex
- 28 ozs Roundup + 4 ozs Canopy
- 4 pts Gramoxone
- 4 pts Gramoxone + 1 pt 2,4-D
- 4 pts Gramoxone + 1 qt Aatrex

% Visual Control 28 Days after Treatment
Influence of Herbicide Treatments and Application Timings on the Control of a Cereal Rye Cover Crop (results averaged across 3 years)

% Visual Control 28 Days after Treatment
Influence of Herbicide Treatments and Application Timings on the Control of a Annual Ryegrass Cover Crop (results averaged across 3 years)
Influence of Herbicide Treatments and Application Timings on the Control of a Crimson Clover Cover Crop (results averaged across 3 years)

- 28 ozs Roundup
- 28 ozs Roundup + 1 pt 2,4-D
- 28 ozs Roundup + 16 ozs Clarity
- 28 ozs Roundup + 1 oz Sharpen
- 28 ozs Roundup + 1 qt Aatrex
- 28 ozs Roundup + 4 ozs Canopy
- 4 pts Gramoxone
- 4 pts Gramoxone + 1 pt 2,4-D
- 4 pts Gramoxone + 1 qt Aatrex

% Visual Control 28 Days after Treatment
Influence of Herbicide Treatments and Application Timings on the Control of a Hairy Vetch Cover Crop (results averaged across 3 years)

<table>
<thead>
<tr>
<th>Herbicide Treatment</th>
<th>Early Timing (early April)</th>
<th>Late Timing (early May)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 ozs Roundup</td>
<td>90%</td>
<td>70%</td>
</tr>
<tr>
<td>28 ozs Roundup + 1 pt 2,4-D</td>
<td>95%</td>
<td>85%</td>
</tr>
<tr>
<td>28 ozs Roundup + 16 ozs Clarity</td>
<td>92%</td>
<td>80%</td>
</tr>
<tr>
<td>28 ozs Roundup + 1 oz Sharpen</td>
<td>88%</td>
<td>70%</td>
</tr>
<tr>
<td>28 ozs Roundup + 1 qt Aatrex</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>28 ozs Roundup + 4 ozs Canopy</td>
<td>85%</td>
<td>70%</td>
</tr>
<tr>
<td>4 pts Gramoxone</td>
<td>85%</td>
<td>60%</td>
</tr>
<tr>
<td>4 pts Gramoxone + 1 pt 2,4-D</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>4 pts Gramoxone + 1 qt Aatrex</td>
<td>90%</td>
<td>80%</td>
</tr>
</tbody>
</table>

% Visual Control 28 Days after Treatment
Influence of Herbicide Treatments and Application Timings on the Control of a Austrian Pea Cover Crop (results averaged across 3 years)

% Visual Control 28 Days after Treatment

- Early Timing (early April)
- Late Timing (early May)

- 28 ozs Roundup: 95%
- 28 ozs Roundup + 1 pt 2,4-D: 90%
- 28 ozs Roundup + 16 ozs Clarity: 92%
- 28 ozs Roundup + 1 oz Sharpen: 91%
- 28 ozs Roundup + 1 qt Aatrex: 93%
- 28 ozs Roundup + 4 ozs Canopy: 94%
- 4 pts Gramoxone: 96%
- 4 pts Gramoxone + 1 pt 2,4-D: 97%
- 4 pts Gramoxone + 1 qt Aatrex: 98%
The Effect of Herbicide Application Timing on Biomass Reduction of Various Cover Crop Species
(results summarized across 3 years in Missouri)

- Austrian winter pea
- Crimson Clover
- Hairy Vetch
- Annual ryegrass
- Wheat
- Cereal rye + hairy vetch
- Cereal rye

% Biomass Reduction 28 Days After Treatment

Bars followed by the same letter are not different, LSD$_{0.05}$
Influence of Glyphosate + 2,4-D on Burndown of Various Cover Crops

Winter Wheat
- early
- late

Cereal Rye
- early
- late

Annual Ryegrass
- early
- late

Crimson Clover
- early
- late

Hairy Vetch
- early
- late

Austrian Winter Pea
- early
- late
Influence of Selected Herbicide Treatments on Cover Crop Biomass Reduction

(results averaged across 7 cover crop species and 3 years in Missouri)

<table>
<thead>
<tr>
<th>Herbicide Treatment</th>
<th>Biomass Reduction 28 Days After Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyphosate + Clarity</td>
<td>a</td>
</tr>
<tr>
<td>Glyphosate + 2,4-D</td>
<td>a</td>
</tr>
<tr>
<td>Gramoxone Inteon + 2,4-D</td>
<td>a</td>
</tr>
<tr>
<td>Glyphosate + Sharpen</td>
<td>ab</td>
</tr>
<tr>
<td>Gramoxone Inteon + Atrazine</td>
<td>ab</td>
</tr>
<tr>
<td>Glyphosate + Canopy EX</td>
<td>bc</td>
</tr>
<tr>
<td>Glyphosate + Atrazine</td>
<td>bc</td>
</tr>
<tr>
<td>Gramoxone Inteon</td>
<td>c</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>c</td>
</tr>
</tbody>
</table>

*Bars followed by the same letter are not different, LSD_{0.05}
Conclusions:
Biomass reduction in response to application timing

The early application timing resulted in significantly greater biomass reduction for all cover crops except:

• Austrian Winter Pea
• Hairy Vetch
Conclusions:
Most effective herbicide program across all cover crop species

In general, herbicide programs that contained a growth regulator resulted in the most consistent control across all cover crop species:

Biomass Reduction:
• Glyphosate + 2,4-D: 83%
• Glyphosate + Clarity: 85%

Visual Control:
• Glyphosate + 2,4-D: 90%
• Glyphosate + Clarity: 90%
All cover crops should not be viewed equally...
Annual Ryegrass
Lolium multiflorum
a.k.a. “Italian Ryegrass” or just “Rye grass”
NOT Annual Rye NOT Cereal Rye

© Kevin Bradley, Univ. Missouri
Top 15 Resistant Weeds According to # of Herbicide Modes of Action

1. Rigid Ryegrass - 11
2. Barnyardgrass - 9
3. Annual Bluegrass - 9
4. Goosegrass - 7
5. Blackgrass - 6
6. Waterhemp - 6
7. Junglerice - 6
8. Annual Ryegrass - 5
10. Common Ragweed - 5
11. Wild Oat - 5
12. Horseweed - 5
13. Redroot Pigweed - 4
14. Downy Brome - 4
15. Common Lambsquarters - 4

© weedscience.org, Dr. Ian Heap, 11/2013
Glyphosate-resistant ryegrass is now one of the most significant weed problems in many southern states.

Photo courtesy of Dr. Larry Steckel
Influence of Herbicide Treatments and Timings on the Control of an Annual Ryegrass Cover Crop (Columbia, Missouri 2013)

<table>
<thead>
<tr>
<th>Herbicide Treatment</th>
<th>Application Timing</th>
<th>Rate</th>
<th>Early (April 2)</th>
<th>Mid (April 22)</th>
<th>Late (May 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-product/A-</td>
<td>---% Ann. Ryegrass Biomass Reduction 28 DAT---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roundup PowerMax</td>
<td>36 fl ozs</td>
<td>93</td>
<td>80</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Roundup PowerMax + 2,4-D</td>
<td>36 fl ozs + 1 pt</td>
<td>92</td>
<td>75</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Roundup PowerMax + Clarity</td>
<td>36 fl ozs + 1 pt</td>
<td>87</td>
<td>65</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Roundup PowerMax + Sharpen</td>
<td>36 fl ozs + 1 fl oz</td>
<td>90</td>
<td>76</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Roundup PowerMax + Aatrex</td>
<td>36 fl ozs + 1 qt</td>
<td>91</td>
<td>81</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Roundup PowerMax + Canopy</td>
<td>36 fl ozs + 4 ozs</td>
<td>88</td>
<td>79</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Roundup PowerMax + Basis Blend</td>
<td>36 fl ozs + 1.25 ozs</td>
<td>83</td>
<td>78</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Roundup PowerMax</td>
<td>72 fl ozs</td>
<td>90</td>
<td>78</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Gramoxone Inteon</td>
<td>4 pts</td>
<td>78</td>
<td>77</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Gramoxone Inteon + 2,4-D</td>
<td>4 pts + 1 pt</td>
<td>90</td>
<td>77</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Gramoxone Inteon + Aatrex</td>
<td>4 pts + 1 qt</td>
<td>87</td>
<td>82</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Gromoxone Inteon + Lorox</td>
<td>4 pts + 24 ozs</td>
<td>89</td>
<td>83</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Gromoxone Inteon + Sencor + 2,4-D</td>
<td>4 pts + 4 ozs + 1 pt</td>
<td>90</td>
<td>87</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Liberty</td>
<td>29 fl ozs</td>
<td>35</td>
<td>50</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Liberty + Atrazine</td>
<td>29 fl ozs + 1 qt</td>
<td>71</td>
<td>50</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

LSD_{0.05} (treatments x timings): 15
36 fl ozs Roundup PowerMax + 1 qt Aatrex

April 2nd application

April 22nd application

May 16th application

photos taken on June 1st

© Kevin Bradley, Univ. Missouri
Effective Kill of Cover Crop Species

• Proper herbicide timing (late March/early April) is important for most species

• Proper temperature/environment before and after application may be just as important

• Species that are likely to winter kill in central Missouri = tillage radish, sometimes oats

• Species that have proven difficult to control = wheat, crimson clover, Italian ryegrass

• Species that are fairly easy to control = cereal rye, Austrian winter pea,