Nitrogen & Nutrient Strategies for 2014

Peter Scharf University of Missouri

Pioneer Agronomy Seminar January 9, 2014

Strategy 1: Don't let your corn look like this

Central Iowa, August 2008

Western Missouri, August 2009

How much money do you think the producer lost in this field due to N deficiency?

Yield map: yellow corn yielded poorly

Yield map: yellow corn yielded poorly

N Deficiency costs a lot!

2009 Yield Map

+ 2009 georeferenced photo

Western Missouri, August 2009

How did this corn get yellow?

Excess rainfall, April to June

Four wet springs Outlined areas > 16 inches rain April-June

There was widespread N deficiency 2008-2011 across the Corn Belt

Northwest Missouri, August 2008

There was widespread N deficiency 2008-2011 across the Corn Belt

Central Illinois, August 2009

There was widespread N deficiency 2008-2011 across the Corn Belt

Western Illinois, June 2010

There was widespread N deficiency 2008-2011 across the Corn Belt

Central Iowa, August 2008

I estimate that we lost 2 billion bushels of potential yield 2008-2011

Strategy 1: Don't let your corn look like this

How can you avoid it?

Central Iowa, August 2008

N must be applied in-season

In a wet year,

How do I know that?

Central Iowa, August 2008

Central Missouri 2008: in-season N kicks butt

44 bulac

110 N sidedress knee-high

180 N at planting

Central Missouri 2009: in-season N kicks butt again

+ 68 bu/acre

153 N sidedress Posknee-high

180 N at planting

80 bui difference

Central Missouri 2010: Can you believe a 3-peat?

197 SIDE

124 PRE

Central Missouri 2013: N rate & timing

N timing	N rate	Yield
Knee-high	167 (chlorophyll meter)	213
Knee-high	174 (crop sensor, VR 67 to 191)	207
Knee-high	132 (soil nitrate test)	196
Preplant	180	126
Preplant	140	101
Preplant	140 (soil nitrate test)	94
Preplant	100	72
	0	51

Sidedress N benefit in this experiment 2007-2013 totals about 260 bushels/acre

All in the wet years: 2008, 2009, 2010, 2013

Wait! What about: Anhydrous ammonia in April? With N-Serve? Or ESN?

N timing	N source	Corn yield
April	Urea + Agrotain	120

N timing	N source	Corn yield
April	Urea + Agrotain	120
April	ESN	143

N timing	N source	Corn yield	
April	Urea + Agrotain	120	
April	ESN	143	
April	Anhydrous ammonia	145	
N-Serve didn't increase this yield			

N timing	N source	Corn yield
April	Urea + Agrotain	120
April	ESN	143
April	Anhydrous ammonia	145
July (waist high)	Urea + Agrotain	162

An all-preplant N program will <u>fail</u> on most fields in a wet year

But a planned all-preplant N program is OK

N lost in wet years can be replaced

Yellow corn can be rescued

- Fully fertilized fields but producers concerned ____
- N applied anywhere from thigh-high to tassel

Rescue N outcomes

- Average yield response 34 bu/acre (11 fields)
- Yield response depended on visible stress
 - -High stress: 57 bushels (2 tests)
 - -Medium stress: 41 bushels (5 tests)
 - -Low stress: 14 bushels (4 tests)

Rescue N timing

- How late is too late?
 - Six tests in 2010, all applied at tasseling, ave
 34 bu response
 - <u>Tasseling is NOT too late</u>
 - -Give up by 2 weeks after tassel?

How do I know whether I need to apply rescue N?

Good question

Has it rained a lot since you made your main N application?

Nitrogen Watch: the first line of defense

- On my webpage
- Shows 'danger zones' that are on track for serious N loss
- Based on precipitation maps (from radar)
- Updated weekly until the end of June
- Separate maps for well-drained (leaching) and poorly-drained (denitrification) soils

Nitrogen Watch May 26, 2013

Nitrogen Watch June 30, 2013

OK, I'm in the 'danger zone'. Now what?

My best answer right now: Get up in a plane WITH A CAMERA

But better options are coming

Adapt-N: the second line of defense

- Computer process model
- Online
- From New York
- Being commercialized right now
- Full commercial release before the growing season
- Quite a few field tests in Iowa with On-Farm Network, successful outcomes I think

Adapt-N: the second line of defense

- Uses data on your soils, your N source & timing, your weather
- Requires you to input your soils & management

- Should get you in the right ballpark
- I don't think it will reliably predict spatial variability in N deficiency

NVision: the third line of defense

Late June aerial photo

Predicted yield loss (average 41 bu/acre) Predicted N need (applicator-ready)

NVision: the third line of defense

aerial photo

yield loss map (ave 74) N rate map: fix the problem

NVision: the third line of defense

- The numbers you need to make the right decision and take the right action
- Patented by University of Missouri (& me)
- I'm working hard to put together the right team (or find the right situation) to launch commercially for 2015
- Better than Adapt-N or other models to manage spatial variability (also more reliable?)

How much do I really need to think about this?

How many wet years are we going to have?

Nitrogen Watch May 26, 2013

We made maps like this for every year going back to 1900

More wet area in the central U.S.

Guess what? We're getting there

2013: Far more in-season N than ever before

- Pioneer agronomist webinar June (mainly IA/MO)
 On average expected 50% of acres to get in-season N
- Phone calls July: a dozen consultants, extension agronomists, and retailers in MO/IA/IL
 - On average thought 45% of acres had received inseason N
- Field day wagons northwest MO in August
 22/63 = 35% of corn producers had applied in-season N
- I don't think it had ever been above 5% before

Shift gears....a little teaser

I think that on-farm testing is the wave of the future for P & K management

Questions? Comments?

Near Alexander, Iowa July 22, 2013