Nitrogen Loss: Again??!!

Peter Scharf

University of Missouri Plant Sciences Division

The Missouri N deficiency story

- Terrible in 2008 (recap)
- Even worse in 2009
- How big is this problem?
 - Can we solve it with rescue N?
 - Effectiveness, timing
 - Logistics, cost
 - Need to have a plan before planting
 - Diagnosis & decision

Total Precipitation in Inches April 1, 2008 to June 30, 2008

1B

20

22

24

26

0.01 0.6

6

З

8

1D

12

14

16

Wet & wetter

- Pat Guinan, December 2008:
 –1999 to 2008: wettest 10-year period in Missouri history
- 2009: even wetter

The Symptoms

1. Yellow corn!! 2. STREAKS

Northwest Missouri early August 2008

Western Illinois mid August 2008

Central Iowa late August 2008

August 2008 surveys

40 35 0 Vield loss 90 9 7 7 0 20 20 20 Vield loss estimate on every 100th photo

Bushels lost in 2008 due to N deficiency: My estimates by state

Total 9 states: 463 million bushels

> Some yields were very good anyway

 Many could have been better

Prevention/Cure: in-season N

HALDU/ac

110 N sidedress V7.5

180 N at planting

2009: Deja vú all over again

Total Precipitation in Inches April 1, 2009 to June 29, 2009

central Illinois early August 2009

Same yellow corn

Western Missouri early August 2009, Harrisonville

Western Missouri early August 2009, Missouri City

Western Missouri early August 2009, Kearney

Western Missouri early August 2009, NE of Kansas City

Western Missouri early Aug. 2009, N of Richmond

Western Missouri early August 2009, NE of Lexington

West central Missouri early August 2009, south of Marshall

West central Missouri early August 2009, south of Marshall

Eastern Missouri early August 2009, NE of Mexico

Eastern Missouri early August 2009, NE of Montgomery City

Eastern Missouri early August 2009, SE of Louisiana

Nitrogen timing in 2009

Just sidedressed

Preplant N

WE THE

Nitrogen timing in 2009: in-season N kicks butt again jou/acti 153 N sidedress V7.5 180 N at planting

I'm-looking for 2009 yield maps along this flight path **Aerial photo survey** August 2009

Bushels lost in 2009 due to N deficiency: My estimates by state

Total 8 states: 518 million bushels

 Some yields are very good anyway

 Many could have been better

Bushels lost due to N deficiency: 2-year totals

Total 11 states: **1 billion bushels**

Bushels lost due to N deficiency: 2-year totals

Total Missouri: 181 million bushels

In perspective: 2009 Missouri corn crop is 438 million bushels

2 wet years in a row— What about the last 9?

More perspective: how big is this?

- Ray Massey (ag economist): 2009 production costs for corn about \$490/acre
- Break-even yield = 130 bu at \$3.80
- Estimated state-average yield = 151 bu/ac
- 151 130 = 21 bu/ac is profit
- 21 bu/ac x 3 million acres = 63 million bu are profit, the rest pays production costs

More perspective: how big is this?

- 438 million bu state total 2009
- 375 million bu to pay production costs
- 63 million bu are profit
- My estimate: 113 million bu lost to N deficiency
- I believe that at least 80 million bu could have been economically recovered with rescue N applications
- Rescue N doubles profit?

Rescue N—worth it?

- Ground preparation
- Fertilizer application(s)
- Spray herbicide
- Plant
- Spray again? (herbicide or fungicide)
- Harvest

60 million bushels net

Apply rescue N

(20 million bushels to pay for rescue N and application)

The Cure

Can rescue N really work?

July 16, 2005 Alternating 100' strips w/ and w/o 12 gal 32% UAN (6/29)

Same field

• 6.9 - 17.9

42.1 - 68.9

18.0 - 27.7 Yield response:

- 35 bu where stress is visible
 - 2 bu where no stress is visible

Rescue N: Another example

- Northwest Missouri, 1998
- 200 lb NH₃-N applied fall 1997
- Co-op agronomist suspected N loss
- Rescue N applied to thigh high corn, left checks with no additional N
- Average yield response 40 bu/acre

N loss scenario

- I've had wet weather
- The corn doesn't look so good, I think I've lost N
- But the corn is chest high, so it's too late isn't it?

NO, it's not too late

The Cure—how late?

Delivering the Cure
High-clearance applicators
Aerial application
Fertigation

Delivering the Cure

06/08/2006

Delivering the Cure

Delivering the Cure

'But we didn't have enough machines...'

- ... or days when we could drive
- No-we didn't
- Airplanes!
- I think lack of trying was a bigger obstacle than lack of machines
- We went from <100 thousand to >12 million acres of fungicide in a single year (U.S. total)—machines are out there

Rescue N: Cost & benefit

- \$5 10 per acre application cost
- \$23/acre for 50 lb N
- Total \$33/acre
- Average field lost 25 bu/acre = \$95/acre
- Many producers could bid up application cost and still double their money

Yield loss to N burn (average of 7 locations in Missouri, 2003-04)

150 lb N applied broadcast at corn height:

Treatment	1 foot	2 feet	3 feet	4 feet
Ammonium nitrate	1	8	20	18
28% N solution	9	14	33	61
Urea	0	0	Х	4

Broadcasting Nover corn

- Fast & effective
- Urea is the best choice

 N burn on leaves has minimal effect on yield

 Corn 2 feet tall or less: use Agrotain on urea to prevent volatile loss of N

Plan B

- This is the most important message in this session
- And the simplest
- Planning for rescue N ISN'T GOING TO HAPPEN DURING THE SEASON
- It needs to be done during the winter
- Have rescue N logistics and contacts established

Diagnosis

- N Watch feature on my website
- Aerial photos (NVision product)
 - Quantify potential yield loss
 - Prioritize fields (how severe?)
 - Diagnose a lot of fields quickly
 - Not until corn is waist high
- Computer models (Adapt-N in New York)
 - More regional, less accurate
 - Can diagnose the problem earlier

Nitrogen watch

- On my Nitrogen Loss web page
 - http://plantsci.missouri.edu/nutrientmanagement/nitrogen/loss.htm
- Updated weekly from mid-April until the end of June
- Tracks rainfall totals, identifies areas at risk for N loss

Diagnosis: an example

June 24 aerial photo

Yield loss map predicted from June 24 aerial photo

Yield loss map based on yield monitor data (September 30)

NVision diagnostic service

- Partnership between MU and AgriVision
- Based on aerial photographs
 - Waist high or later
- Products:
 - Field map of predicted yield loss
 - Variable-rate N application map
- Offered this year but not many takers

Questions? Comments?

Photo courtesy of Fred Blackmer