ACCELERATED CALF FEEDING AND SUBSEQUENT PRODUCTION

Stacey Hamilton, PhD

State Dairy Specialist

Scott E. Poock, DVM, DABVP

Associate Extension Professor

COLOSTRUM

- Colostrum
 - essential for first day of life
 - rich in nutrients

- Total solids 23.9%
- Fat 6.7%
- Protein 4.8%
- Calcium 0.26%
- Vitamin A 295
- Vitamin E 84
- IgG 48mg/ml
- Immunological active cells
- Lactoferrin

WHOLE MILK

- Whole milk
 - Nature's food for calves
 - Pasteurizer
- Bulk Tank---29.9-32.7% Fat, 24.2-27.8% Protein (DM)
- Waste Milk---11.5-55.5% Fat, 20.6%-34.9% Protein (DM)

MILK REPLACER

- Calf milk replacer
 - Usually consistent quality
 - 20-28% Protein
 - 15-25% Fat
 - 0.15% Crude Fiber

WHY INVESTIGATE?

- Intensified feeding of calves for accelerated growth is a hot topic in calf management (10 years).
- These programs involve feeding more milk replacer than in conventional programs, such that calves 1.5-3X the dry milk replacer solids.
- Calves will grow faster (lean muscle and skeletal growth) and attain breeding size earlier, and may even produce slightly more milk.
- Dairy Calf and Heifer Association (DCHA) Gold Standard is to double the weight of the calf from birth to 60 days of age
- Holsteins ~ 1.5# per day
- Jerseys ~ 1# per day

WHY INVESTIGATE?

- 1) Maintenance (Metabolizable Energy) is not small
- 2) For calves to grow fast they need to consume more (milk or starter)
- 3) Calf protein (amino acid) needs are low for maintenance but increase rapidly for growth
- 4) Protein needs for growth plateau around 28%, in regard to milk or milk replacers
- 5) Simply feeding more 20/20 will not provide enough protein and will have relative excess energy, which can lead to fat accumulation.

James Drackley, PhD, University of Illinois

Calf Requirements □ Mineral Requirements

	P	ago l	Welnesday, July 14, 2010	DIE I A	^
Report Components		Calf Requirements			
Cair Requirements Mineral Requirements	<u>N</u>	Major Inputs Used to Compute Young Ca	<u>tf Requirements</u>		
90# calf		Calf Body Weight : 90 (lbs) Temperature : 75.0 deg. F	Diet ME: 2.10 (Mcal/Ibs) Diet NEm: 1.81 (Mcal/Ibs) Diet NEg: 1.45 (Mcal/Ibs)		
1.25# of milk replacer	<u>(</u>	Calculation of Young Calf Regiverments			
per day	A	Allowable Gain			
75 degrees F		Energy Allowable ADG :	ADP Allowable Gain :		
-	<u>I</u>	Maintenance Requirement Calculations			
0.86 #/day		Total Milk Dry Matter Intake : 1.25 (Ibs/c Total Starter Dry Matter Intake : 0.00 (Ibs	lay) √day)		
ore e maay		Net EnergyBasal Maintenance Requireme Temperature Multiplier : 1.00 Net EnergyRequired for Maintenance : 1 DryMatter Intake Required for Maintenar	ent : 0.086 (Mcal/day/BW^0.75) .39 (Mcal/day) .ce : 0.77 (Ibs/day)		
<u>V</u> iew Report		Efficiency of use of ME for NEm : 0.86 Metabolizable Energy Required for Maint	enance : 1.62 (Mcal/day)		
Print Papart		ApparentlyDigested Protein Required for Crude Protein Required for Maintenance :	Maintenance : 27 (g/day) 29 (g/day)		
	<u>_</u>	rowth Requirement Calculations			
Printer <u>S</u> etup		Intake Available for Growth : 0.48 (lbs/da Net Energy Available for Growth : 0.70 (Efficiency of use of ME for NEg : 0.69	uy) Mcal/day)		*
		Page 1 of 1	Zoom : 7	5% 🗨	

🏁 NRC Nutrient Requirements of Dairy Cattle - Default Simulation

<u>File G</u>o To... <u>H</u>elp

Report Components

Calf Requirements

90 # calf 1.25 # of milk replacer per day 32 degrees F

0.16 #/day

Page 1	Welnerday, July 14, 2010	DIETA
Calf Requirements		
Major Inputs Used to Compute You	ung Calf Requirements	
Calf Body Weight : 90 (lbs) Temperature : 32.0 deg. F	Diet ME : 2.10 (Mcal/lbs) Diet NEm : 1.81 (Mcal/lbs) Diet NEg : 1.45 (Mcal/lbs)	
Calculation of Young Calf Requirer	nents	
Allowable Gain		
Energy Allowable ADG	ADP Allowable Gain :	
Maintenance Requirement Calculation	<u>18</u>	
Total Milk Dry Matter Intake: 1.2 Total Starter Dry Matter Intake: 0	15 (Ibs/day) .00 (Ibs/day)	
Net EnergyBasal Maintenance Rec Temperature Multiplier : 1.54 Net EnergyRequired for Maintena DryMatter Intake Required for Ma	quirement : 0.086 (Mcal/day/BW^0.75) nce : 2.14 (Mcal/day) intenance : 1.18 (Ibs/day)	
Efficiency of use of ME for NEm : Metabolizable Energy Required for	0.86 Maintenance : 2.49 (Mcal/day)	
ApparentlyDigested Protein Requi Crude Protein Required for Mainte	red for Maintenance : 27 (g/day) nance : 29 (g/day)	
Growth Requirement Calculations		
Intake Available for Growth : 0.07 Net Energy Available for Growth : Efficiency of use of ME for NEg :	' (Ibs/day) 0.09 (Mcal/day) 0.69	
Efficiency of use of ME for NEg : Page 1 of 1	0.69	

File Go To... Help

.

Accelerated Milk Replacer

		Page I	Wednesday, June 24, 2015	DETA	
Report Components		Calf Requirements			
		Major Inputs Used to Compute Young Cal	<u>lf Requirements</u>		
90 # calf		Calf Body Weight: 90 (lbs) Temperature: 72.0 deg. F	Diet ME : 2.10 (Mca1/1bs) Diet NFm : 1.81 (Mca1/1bs)		
1.88 # of milk replacer		10mp/11000 / 220 005.1	Diet NEg : 1.45 (Mcal/lbs)		
per day		Calculation of Young Calf Requirements			Е
1.74 #/day		Allowable Gain			
		Energy Allowable ADG	ADP Allowable Gain		
32 Degrees F		Maintenance Requirement Calculations			
1.18 #/day		Total Milk Dry Matter Intake : 1.89 (lbs/ Total Starter Dry Matter Intake : 0.00 (lbs/	day) Is'day)		
		Net Energy Basal Maintenance Requirem Temperature Multiplier : 1.00 Net Energy Required for Maintenance : 1	ent: 0.086 (Mcal/day/BW^0.75)		
View Deport		Dry Matter Intake Required for Maintenar	nce: 0.77 (lbs/day)		
		Efficiency of use of ME for NEm:0.86 Metabolizable EnergyRequired for Maint	tenance : 1.62 (Mcal/day)		
Print Report		Apparently Digested Protein Required for Crude Protein Required for Maintenance	r Maintenance : 28 (g/day) : 30 (g/day)		
		Growth Requirement Calculations			
Printer <u>S</u> etup		Intake Available for Growth : 1.12 (lbs/da Not E party: Available for Growth : 1.62 (ay) O Saal (dae i)		
		Page 1 of 2	Zoom : 75%	•	
🔊 🖸 💪 🚞 👩 💽 👰	1			- ai ≯ 4₀ P* @ \$\$;	3:06 PM

6/24/2015

THERMONEUTRAL ZONE FOR CALVES

- < 3 weeks of age</p>
- 59-77 degrees F
- > 3 weeks of age
- 41-77 degrees F

WHAT'S THE DIFFERENCE?

Conventional

- Protein 20-22%
- Fat 15-20%
- Feed 1-1.25#/day or 8-10 ounce per feeding
- 2 quarts volume
- Free choice water and grain (20-22% protein)

Maximize starter intake

Accelerated

- Protein 26-28%
- Fat 15-20% (Jersey 25%)
- Feed 1.88-2.5#/day or 15-20 ounces per feeding
- 3-4 quarts volume
- Free choice water and grain (20-22% protein)
- Varying amount of milk replacer depending on age
- Maximize milk/milk replacer

HOW DO YOU IMPLEMENT?

- As you increase solids, you must be **increased fluid**
- Use only high protein milk replacers
- Mix one batch of liquid for all calves (no individual bottles) to avoid errors in weighing and allow for more thorough mixing.
- For large breed heifers, feed 2 to 2 ¹/₂ quarts per feeding (twice a day) for week one.
- Feed 3 to 4 quarts per feeding twice a day from week two to 1-2 weeks before weaning.
- Decrease the amount fed the last 1-2 weeks of feeding milk or milk replacer.
- Water and starter feed should be available free choice at all times starting at day two.

IMPACTING RUMEN DEVELOPMENT: GRAIN EFFECT

A.J. Heinrichs, The Pennsylvania State University

Lance Fox, DVM Diamond V

The major difference in growth rate is in the first 2-3 wk of life, and after that growth rates generally are parallel.

Katie TerMeer

Reproduction

- reach puberty at a younger age
- age at conception lower
- age at calving (14-27.5 days)

Health

- University of Minnesota (whole milk)
- decreased death loss during winter (2.8% vs 21%)
- Cornell University (Milk replacer)
- Cryptosporidia
- maintained hydration better, less days of diarrhea, grew faster, and feed efficiency was better
- Other studies
- some show increased immune system

Milk Production (1st lactation)

- 1000-2000# of increased milk in fist lactation
- Parent adjusted milk was greater
- Most studies showed an advantage with over ½ statistical or a trend

WHY INVESTIGATE FOR PASTURE-BASED SYSTEMS?

- Determine if intensified milk feeding in smaller framed dairy heifers will result in:
 - Younger weaned calves at similar weights as traditionally fed calves
 - Decreased breeding and calving age
 - Increase milk production in first lactation

WHAT DID WE DO?

Active Drug Ingre	dient	Active Drug Ingredient			
Neomycin	1300 grams/ton	Neomycin Sulfate	1600 grams/ton		
Sulfate Oxytetracycline (from oxytetracycline	1300 grams/ton	Oxytetracycline (from oxytetracycline dihydrate base)	1600 grams/ton		
dihydrate base)		Guaranteed Analysis	5		
Guaranteed Analy	<i>r</i> sis	Crude Protein,	20.00/		
Crude Protein,	28.50%	min	20.070		
min		Crude Fat, min	20.0%		
Crude Fat, min	15.00%	Crude Fiber,	0 1 5 9 /		
Crude Fiber,	0 15%	max	0.15%		
max	011070	Calcium (Ca),	0 750/		
Calcium, min	0.75%	min	0.15%		
Calcium, max	1.25%	Calcium (Ca),	1 25%		
Phosphorus,	0.000/	max	1.2070		
min	0.60%	Phosphorus (P),	0.7%		
Vitamin A, min	7500 IU/lb	min	0.170		
Vitamin D ₃ , min	2500 IU/lb	Vitamin A, min	30,000 IU/lb		
Vitamin E. min	50 IU/lb	Vitamin D ₃ , min	10,000 IU/lb		
·		Vitamin E, min	150 IU/lb		

PARAMETERS

- 32 Holstein, Jersey or Crossbred heifers assigned to Milk Formula 1 as the traditional milk replacer program
- 43 Holstein, Jersey or Crossbred heifers assigned to Velocity as the accelerated feeding program
- Calves were assigned as groups of 8 and "mob-fed" using 10 nipple feeders
- Birth weight:
 - MF1 = 70.6 #
 - Velocity = 69.0 #
- Average age of start of treatment
 - MF1 = 9.7 days
 - Velocity = 7.0 days

PROTOCOL FOR FEEDING TRADITIONAL VS. ACCELERATED MILK REPLACERS

		Mi tra	lk Fo aditio	rmula nal N	a l- IR			
	week l	week 2	week 3	week 4	week 5	week 6	week 7	week
Oz powder/feeding	7.5	10	10	10	10	10	10	10
(Pints)/feeding	3	4	4	4	4	4	4	4
M	lilk For	mula l	-traditie Velo	onal mi citv-	ilk repl	acer –	68#	
		ac	celera	ated I	MR			
Oz powder/feeding	7.5	12.5	15	15	15	10		
(pints)/feeding	3	5	6	6	6	4		
	Vologi		lorated			- 66#		

Commercial Agriculture Program

SOUTHWEST CENTER 2012 BORN CALVES

Stacey Hamilton, PhD University of Missouri

BODY WEIGHT DIFFERENCES AFTER WEANING BETWEEN HEIFERS FED ACCELERATED OR TRADITIONAL MILK REPLACER: 2012 BORN CALVES

Growth

- Same advantage as with the confinement Holsteins for preweaning
- Variable at breeding and calving (depending on year)

Reproduction (year of breeding)

	2013 and 2014 combined						
	Μ	F1	Vel	ocity			
	32 he	eifers	43 h	eifers			
First Service	21	65.6%	32	74.4%			
Second Service	5	15.6%	7	16.3%			
Third Service	6	18.8%	4	9.3%			
Cull	6	18.8%	5	11.6%			

Reproduction

MF1 Velocity

12 Cows (16) 19 Cows (21)

	# Preg	%	# Preg	%
First service	5	41.7%	11	57.9%
Second				
Service	6	50.0%	5	26.3%

Health

- No advantage
- Historically, calf health was excellent when dairy personnel raised the calves.

Milk Production (1st lactation)

Year of Birth	Treatment	ME305 FCM
2012	Milk Formula 1	14,400
2012	Velocity	14,877

2013	Milk Formula 1	15,766
2013	Velocity	16,760

Total	Milk Formula 1	15,110
Total	Velocity	15,871

WHY INVESTIGATE FOR PASTURE-BASED SYSTEMS?

- Determine if intensified milk feeding in smaller framed dairy heifers will result in:
 - Younger weaned calves at similar weights as traditionally fed calves

•YES!

Decreased breeding and calving age

Yes, appears to be better reproduction

Increase milk production in first lactation

Yes, appears to be better production

WHAT ARE DISADVANTAGES/NEGATIVES?

Health

Feces

"milk scours"

WHAT ARE DISADVANTAGES/NEGATIVES?

Clostridial disease

- Clostridium perfringens C & D (maybe B)
- Antitoxin (10 cc subQ shortly after birth)
- Colorado Serum
- Clostridium perfringens types C&D antitoxin
- Boehringer Ingelheim
- C & D Antitoxin
- Novartis (Elanco)
 - **Clostratox BCD Antitoxin**

APPROXIMATE COST OF EACH PROGRAM

 Intensified feeding programs will cost about \$35 to \$55 more in milk replacer and starter than traditional programs.

	Velocity (Accelerated)				MF1			
		Cost/Unit	Total Cost		Cost/Unit	Total Cost	Difference	Period Fed
Milk	66	\$1.90	\$125.40	68	\$1.43	\$97.24	\$28.16	to weaning
Starter	315	\$0.28	\$88.20	292.5	\$0.28	\$81.90	\$6.30	3 days to April 30
Grower	450	\$0.27	\$121.05	450	\$0.27	\$121.05		May 1-July 31
Developer	675	\$0.25	\$167.40	675	\$0.25	\$167.40		Aug 1 to end of December
Total Per Calf			\$502.05			\$467.59	\$34.46	

WHAT ARE DISADVANTAGES/NEGATIVES?

- Intensive management required for program success
- Increased costs during the milk feeding period (\$30- \$50 per calf)
- Delayed rumen development and poor transition at weaning
- Jerseys need more fat than Holsteins

SUMMARY OF POSITIVES

- Increased lean growth in pre-weaning stage
- Potential health benefits
- Earlier age at first calving
- More potential production in first lactation

