ZERO-DISCHARGE BIOFLOC AQUACULTURE

D. E. Brune Professor of Bioprocess and Bioenergy Engineering University of Missouri, Columbia, Mo.

WHAT IS BIOFLOC AQUACULTURE?

- Aquaculture production^(a) in which aquatic animal rearing^(b) and water treatment are occurring predominately in same water footprint, as opposed to, separate water treatment operations, such as biofilters (fixed film), or gas exchange.
- 2) Water treatment consisting of suspended cell microbial growth^(c) and/or microbially-mediated reactions such as, photosynthesis^(d), nitrification, denitrification and/or heterotrophic bacterial growth
 - ^{a)} Intensive to super-intensive production (8,000 45,000 lb/ac-cycle, organic loading of 100-1,000 lbs/acre-day
 - ^{b)} Aquaculture species tolerate of high solids levels of 50-300 mg/l such as shrimp, tilapia, carp, catfish.
 - ^{c)} Brune, D., E., Henrich, C., Kirk, K., and A. G. Eversole, Suspended-Cell Microbial Coculture for Limited Discharge Aquaculture, International Conference on Recirculating Aquaculture, Roanoke VA. June 2010

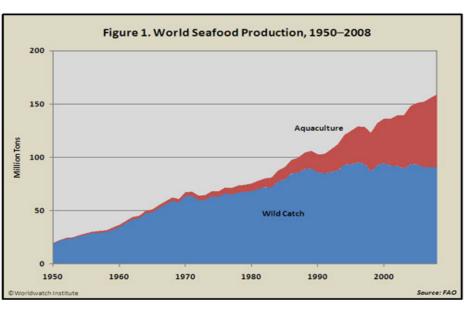
^{d)} Stabilized algal cultures, not typically associated with "biofloc"

Limited-Discharge / Zero-Discharge and Production Intensification,

- 1) Physical-chemical solids management; 1-2 system water replacements per growth cycle. Zero discharge possible with sludge dewatering/recycling systems added.
- 2) Bioprocessing of solids; zero-water discharge possible. Bioprocessing requires animals and systems supporting filter feeding organisms, yielding feed and fuel by products
- 3) Increased capital and operating cost drives systems intensification to reduce production cost/lb

Why zero-discharge aquaculture?

Animal agriculture recovers only a small fraction of feed-N


79 – 88% nitrogen discharged as pollutant

Soy, corn & fishmeal nitrogen inputs

12 – 21% protein nitrogen converted to fish or shrimp

Shrimp Production Issues

- Water/waste discharge
- Fish meal importation
- Food transport/food quality
- Shrimp energy footprint

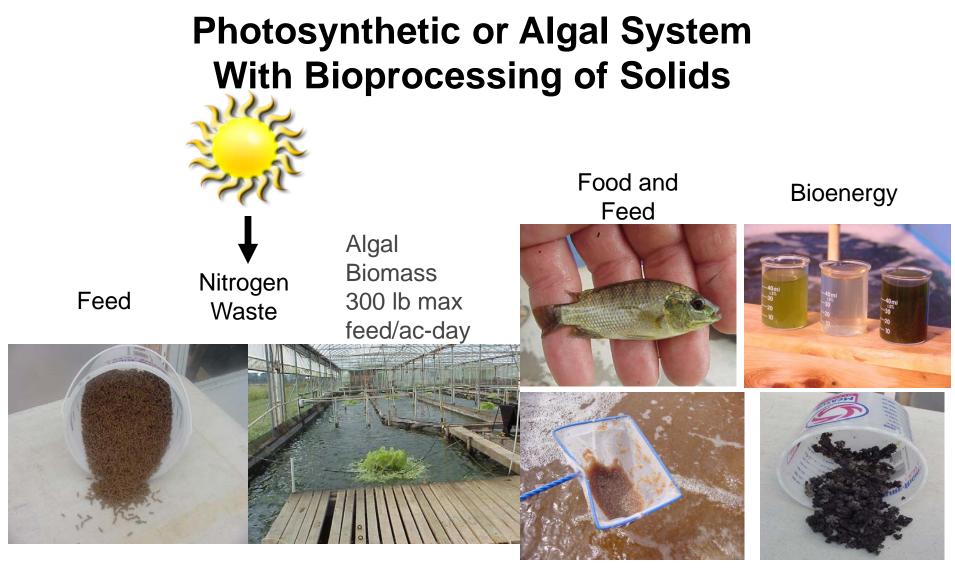
- 1.2 billion lbs/yr shrimp imported to U.S. from Asia; 85% of U.S. consumption.
- 10 X more shrimp wastewater to China's coastal than other industrial wastes
- Shrimp feed 28% of fish meal depleting marine forage fish stocks

In limited or zero-discharge aquaculture , ammonia-N must be treated, recovered , or disposed of using one or more of three techniques;

Algal Photosynthesis (Green Water; Requires Sunlight)

 $NH_4 + CO_2 = C_{106}H_{263}O_{110}N_{16}P$ (Algal Biomass) + 106 O_2

Bacterial Nitrification (Autotrophic Biofloc; Slower Growth)


 $NH_4 + O_2 = C_5H_7O_2N$ (Bacterial Biomass) + $NO_3 + CO_2$

Heterotrophic Bacteria (Brownwater; Requires Carbohydrate)

 $NH_4 + C_6H_{12}O_6$ (Sugar) $+ O_2 = C_5H_7O_2N$ (Bacterial Biomass) $+ CO_2$

Algal and heterotrophic = yields large quantities of microbial biomass (~12,000+ lbs/acre dry sludge/cycle)

The solution; recover, convert microbial biomass to food, feed, fuel, and fertilizers

Brine shrimp

Slow Release Biofertilizer

Heterotrophic; Bacterial System With Bioprocessing of Solids

Feed

Bacterial Biomass Feed C/N = 12-15/1

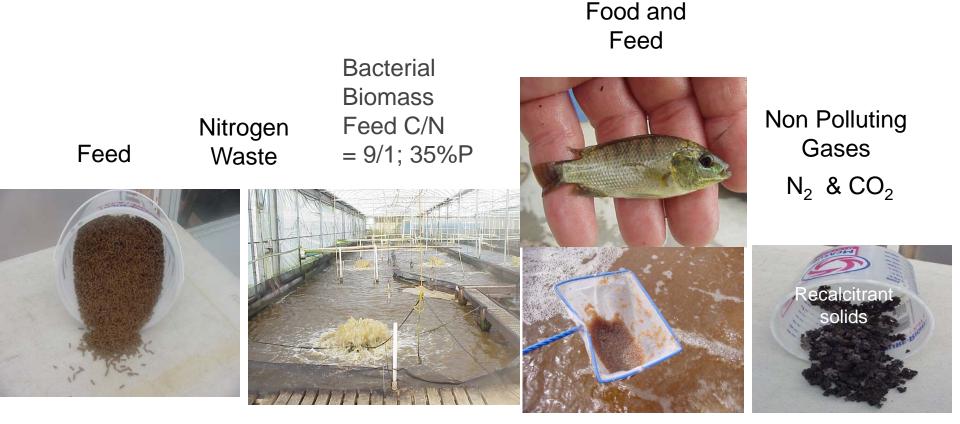
Biofloc

Nitrogen

Waste

Food and

Feed


Bioenergy

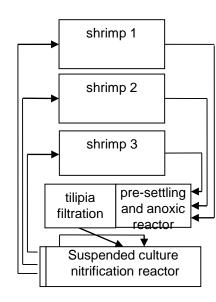
Brine shrimp

Slow Release Biofertilizer

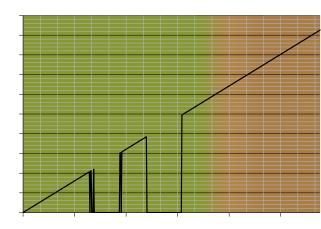
Carbohydrate addition

Nitrifying/Denitrifying (Autotrophic Bacterial) With Bioprocessing of Solids

Biofloc;10% solids production of heterotrophic Brine shrimp


Slow Release Biofertilizer

Clemson; Marine Shrimp 2001-2008


- 0.25 acre greenhouse
- 33,000 lbs/acre zero-discharge
- Deep tanks for supplemental -N treatment
- Algal floc displaced by bacterial floc at feeding levels of >250-500 lb/ac-day

YR	Yield	Feed (Ib/ac-d)
	(lb/ac)	Ave
2003	14,689	155
2004	22,773	378
2005	33,232	608
2007	20,500	700

University of Missouri 2011-2016

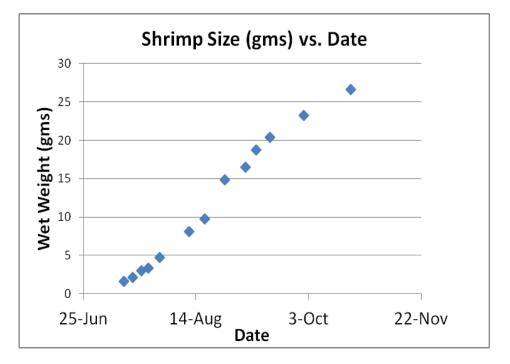
- 0.07 acre greenhouse
- Zero-discharge, sustainable seafood, feed and biofuel co-production
- Tilapia and brine shrimp stablized bioprocessing of microbial biomass
- Greenwater and brownwater

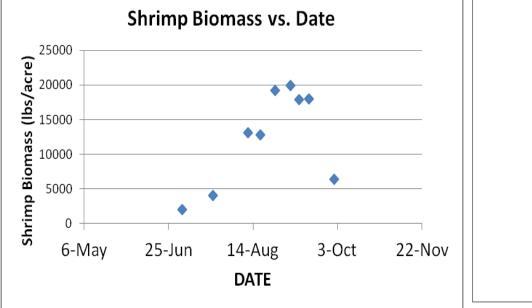
MU Bradford Facility 2013

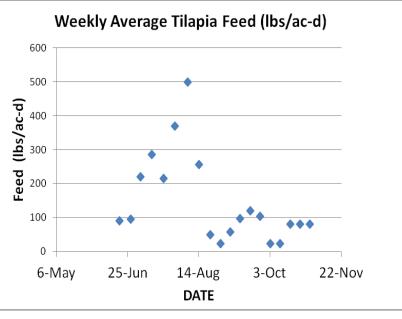
Two - 2,000 liter brine shrimp production reactors

Brine shrimp microbial harvest

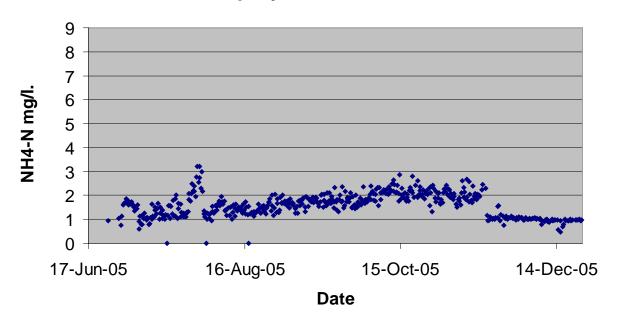
Tilapia Raceway

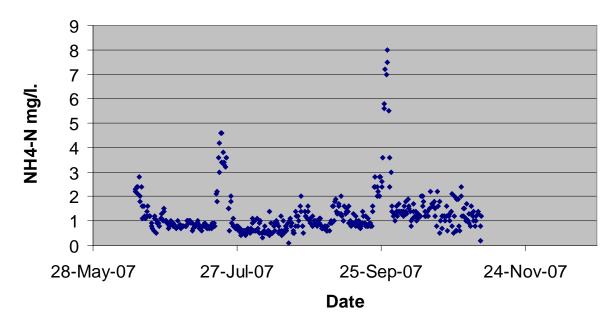


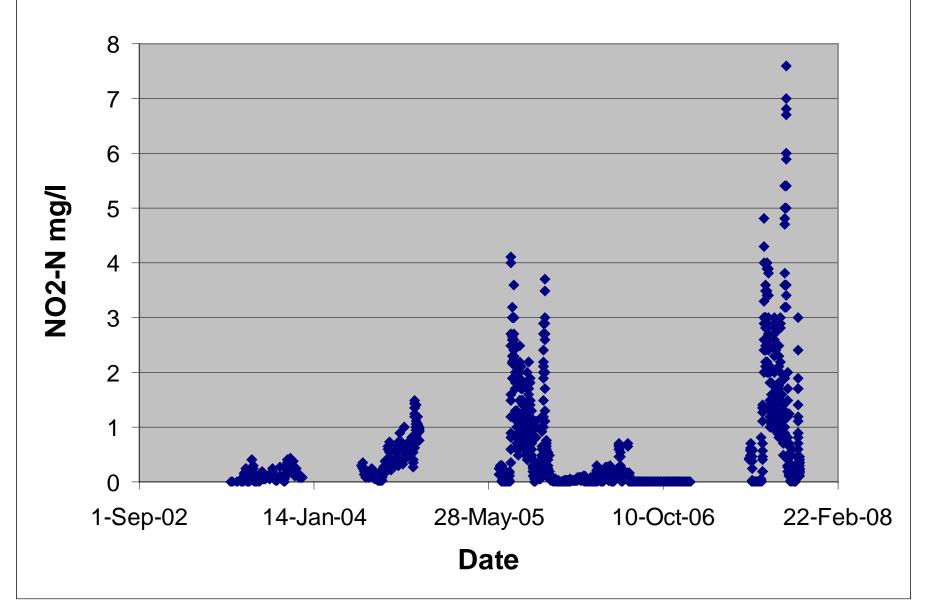

Pacific White Shrimp Raceway



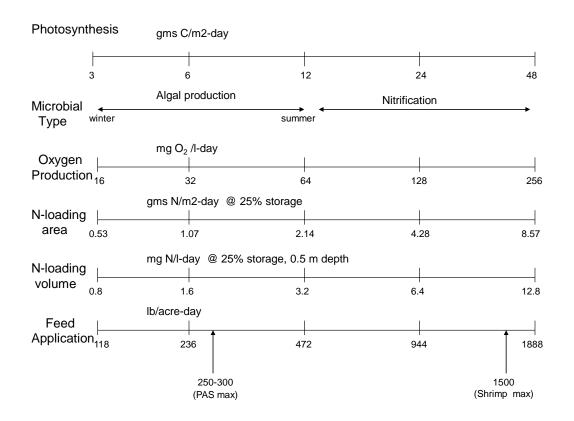
Stocking and Harvest 2013

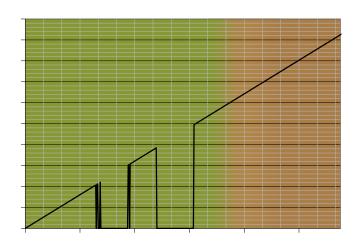

- Stock June 9, PL 8/9 @ 250/m²
- SPF shrimp from SIS-Florida
- Harvest Aug 20, 19.5 gm (23.3 ct), 101 day grow-out
- Maximum carrying capacity = 499 lbs (19,960 lbs/acre); FCR = 2.12/1
- Purina diet, 35% protein




Shrimp System Ammonia 05

Shrimp System Ammonia 07




Shrimp System Nitrite, 03,04,05,06,07

Biofloc = Special case of suspended-cell microbial culture

Algal to bacterial water treatment depending on level of external energy input; feed and solar (algal up to 250- 300 lb-feed/ac-d), Nitrifying at C/N of 9/1 (35% protein), Heterotrophic C/N of 12-15/1

Physical Configuration, Stocking, Projected Yields

Ponds, Tanks, Raceway/Hybrid Ponds

Intensive Ponds

Stocking = 100-150/m² Yields = 8,000-12,000 lb/acre-100-130 days Feed/organic rate = 100-200 lb/ac-day Aeration = 15-30 hp/ac Capital = \$60,000- \$150,000/acre Microbial type = algal/heterotrophic or algal/nitrifying Water depth = 5-6 ft ADVANTAGES = Lowest cost intensive production DISAVANTAGES = Marine tropical location

DISAVANTAGES = Marine tropical location needed, water input /discharge or treatment ponds needed, potential environmental impacts, production intensity limited by water mixing and solids sedimentation

Coastal Belize

Aquasol consultants, FL

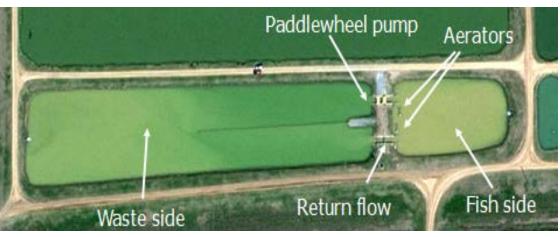
Marine Shrimp, China

Tanks

Stocking = 200-400/m² Yields = 25,000-45,000 lb/acre-100-120 days Feed/organic rate = 400-1000 lb/ac-day Aeration = 60-100 hp/ac Capital = highly variable Microbial type = heterotrophic or nitrifying (indoor) ADVANTAGES = Flexible size of operation, control over inventory and harvest schedule, multiple batch production, independent/isolation possible, zerodischarge, good learning platform

DISAVANTAGES = Not hydrodynamically scalable, Low water surface area to enclosure ratio, Not well suited to automation

Dairyland Shrimp LLC, Wisconsin, Heterotrophic biofloc, saltwater zero-water exchange, clarifying tanks, 120 day grow-out to 20 gram shrimp


Blue Oasis Shrimp, Las Vegas, Water treatment not described, out of business 2016?

Raceways and Hybrid Ponds

Stocking = 100-400/m² Yields = 15,000-45,000 lb/acre-100-120 days Feed/organic rate = 200-1000 lb/ac-day Aeration = 30-100 hp/ac Water depth = 2-5 ft Water velocity = 0.05- 0.2 fps Capital/AC = \$100,000 (SP), \$600,000 (GH) \$1,600,000 (IB) Microbial type = Algal, heterotrophic or nitrifying ADVANTAGES = Zero discharge possible, solids containment/reuse possible, water footprint 85-90%, Scalable to very large size, suitable for automated feeding and harvest DISAVANTAGES = Capital intensive, Level topography needed, enclosures subject to storm damage, specialized equipment required

Clemson PAS

Mississippi Split Pond

Raceways and Hybrid Ponds continued

Aquaculture Consultancy & Engineering, Netherlands

Mikolong Aquaventure, Philippines

Mississippi, Paddlewheel oil hydraulic drive

Clemson, Paddlewheel variable frequency drive

Surface aerators = readily available, relatively inexpensive, robust, expandable

Airlifts = inexpensive, requires higher pressure blowers, inefficient gas transfer

O₂ injection = No CO₂ removal, dependable supply of pure O₂ needed

Fountain/paddle = fountain aeration available/low cost, provides good water mixing, paddles must be custom built

Texas A&M Agrilife Research Mariculture Laboratory - Flour Bluff indoor recirculating shrimp culture raceways equipped with Aero-Tube™ aeration tubing.

Fountain aeration with paddle driven mixing, MU Bradford Farms 2014.

Surface aerators, Aquacorps, Puerto Rico

Aeration

Aeration (continued)

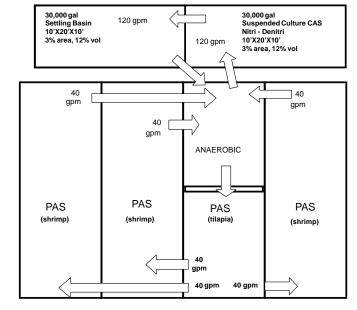
Airlifts, MU Bradford farms First 30-days of culture

Nozzle air injection, Texas A&M Airlifts, Aquaculture Consultancy Netherlands

Solids Control

Algal, 50-100 mg/l; filter-feeder needed to control algal species, algal density and zooplankton elimination

Heterotrophic; 200-400 mg/l, floatation, settling tanks, bead filters, sand filters or filter-feeders, Higher solids produces higher system respiration, higher aeration hp, shorter O_2 buffer time


Nitrification reactors; 200-300 mg/l, solids, 10% of solids production compared to heterotrophic or algal

MU 2014 Zero-discharge Brine shrimp filter-feeding Clemson, 2008 Supplemental treatment algal/bacterial

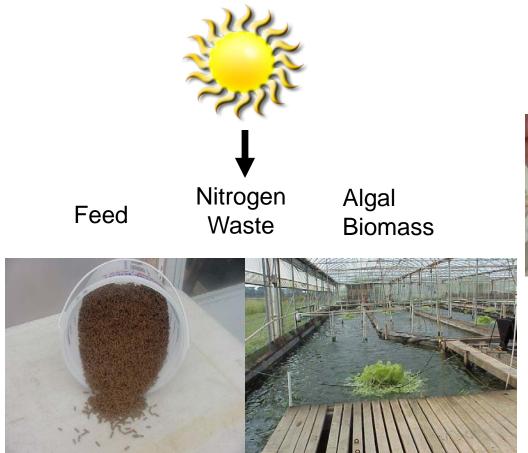
Proposed Configuration for Combined

Algal/Bacterial System (CAS)

Clemson, Excessive solids levels > 400 mg/l

Clemson, impact of tilapia filtration

Foam Fractionation, Texas A&M; one water replacement per cycle Bead Filter, Auburn University; two water replacements per cycle


Ammonia and Alkalinity Control

Algal = 20,000 lb feed/120-200 day, 250 lb-feed/day, solids production = 12,000 lb/cycle, aeration =20-30 hp/acre, alkalinity addition = 0 lb/acre-cycle

Heterotrophic = 70,000 - 90,000 lb feed/100-days of which 30,000 - 40,000 lb as carbohydrate, 500-900 lb-feed /day, aeration = 80-100 hp/acre, solids production = 20,000+ lb/cycle, alkalinity addition = 0 lb/acre-cycle

Nitrification = 70,000 - 90,000 lb feed/120-days (35% protein), aeration= 60-80 hp/acre, 500-900 lb/day, aeration = 60 - 80 hp/acre, required alkalinity addition = 12,000 lb/acre-cycle, with denitrification, alkalinity addition = 0 lb/acre-cycle, solids production = 10% of heterotrophic

Algal System (20,000 lbs/cycle yield)

Bioprocessing for solids control Zero discharge, feed co-production

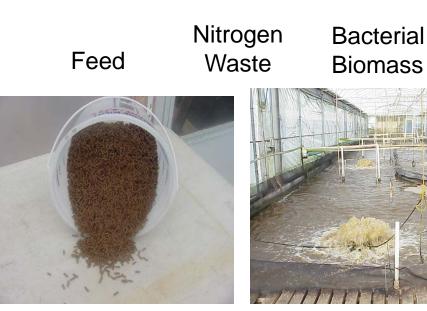
Foam fractionation for solids control One water exchange/cycle Sludge disposal needed

Heterotrophic System (30,000- 45,000 lb/acre yield)

Bioprocessing for solids control Zero discharge, feed co-production

Carbohydrate addition

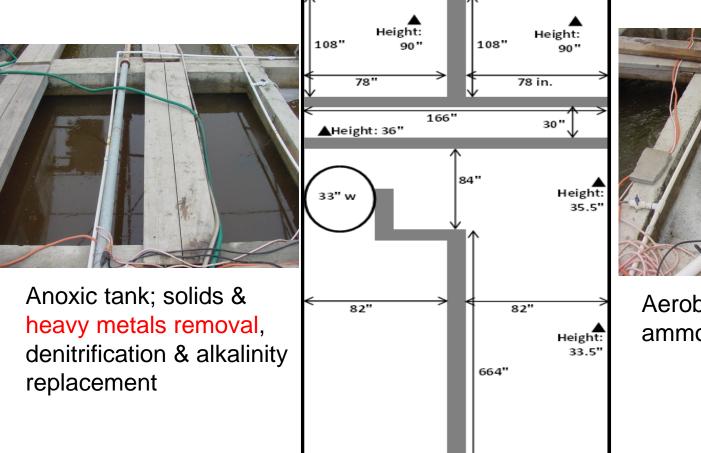
Bead filter processing for solids control Two water exchanges/cycle Sludge disposal needed


Nitrifying/Denitrifying System (30,000- 45,000 lb/acre yield)

Bioprocessing for solid management Zero discharge Non-Polluting gas release N₂ & CO₂

Settling tank, anaerobic digester

Biofloc


MU-Bradford Zero-Discharge Deep Tanks

Two -100 m² (1/40 acre) raceways (2-ft water-depth), anaerobic and aerobic reactors (7.5 ft deep); System volume (30,000 gal) exchanged through reactors once/day; Paddlewheels at 0.2 fps water velocity

84"

172"

Height: 32"

Aerobic tank; supplemental ammonia oxidation

Enterprise Budgets; Shrimp Culture Comparisons

Carrying capacity; 9,800, 12,570, 27,000 & 45,000 lb/ac-cycle; Operational time; 200, 220, 237 & 365 days/yr, four algal, two nitrifying, six heterotrophic; Two R-30 buildings; Ten-greenhouse enclosures Heterotrophic = 90-day cycle, Nitrification and algal = 120 day cycle

Carrying capacity; 27,000 lbs/acre*

- 1) Feed & sugar greenhouse-PAS, 2 crops/yr; FS2(27)
- 2) Feed & sugar greenhouse-PAS, nursery, 3 crops/yr; FS3(27)
- 3) Feed & nitrification greenhouse-PAS, 2 crops/yr; FN2(27)
- 4) Feed & sugar R30-PAS, nursery, 4.6 crops/yr; FS4.6(27) Carrying capacity; 45,000 lbs/acre⁺
- 1) Feed & sugar greenhouse-PAS, 2 crops/yr; FS2(45)
- 2) Feed & sugar greenhouse-PAS, nursery, 3 crops/yr; FS3(45)
- 3) Feed & nitrification greenhouse-PAS, 2 crops/yr; FN2(45)
- 4) Feed & sugar R30-PAS, nursery, 4.6 crops/yr; FS4.6(45)

Carrying capacity; 12,600 lbs/acre-cycle*

1) Fed algal temperate-PAS, 2 crops/yr; FA2(12.6)

Carrying capacity; 9,800 lbs/acre*

- 1) Fertilized algal temperate-PAS, 2 crops/yr; PAS2(9.8)
- 2) Fertilized algal tropical-PAS, 3 crops/yr; TPAS3(9.8)
- 3) Fed lined tropical-pond, 3 crops/yr; TP3(9.8)

Enterprise Budget Summary; Projected Capital & Operating Costs/ac-yr

Carrying capacity; 9,800, 12,570, 27,000 & 45,000 lb/ac-cycle; Operational time; 200, 220, 237 & 365 days/yr, four algal, two nitrifying, six heterotrophic; Two R-30 buildings; Ten-greenhouse enclosures

												I
CAPACITY (lbs/acre-cycle)	27k	27k	27k	27k	45k	45k	45k	45k	12,570			
SYSTEM DESCRIPTION	F/S-2	F/S-3	F/N-2	F/S-4.6	F/S-2	F/S-3	F/N-2	F/S-4.6	F/A-2	PAS-2	TPAS-2	TP-3
INPUT												
feed (lb/ac-yr)	97,200	145,800	97,200	223,200	162,000	243,000	162,000	372,600	45,256	0	0	52,963
sugar (Ib/ac-yr)	97,200	145,800	0	223,220	162,000	243,000	0	372,600	0	0	0	0
electrical (kw-hr/ac-yr)	243,000	307,150	191,970	473,040	405,000	511,920	319,950	788,400	81,000	89,100	133,650	98,550
heat (kw-hr/ac-yr)	172,685	350,822	390,237	0	111,771	298,032	320,333	0	277,331	387,781	0	0
OUTPUT												
shrimp (Ib/ac-yr)	54,000	81,000	54,000	124,200	90,000	135,000	90,000	207,000	25,140	19,600	29,400	29,400
methane (kw-hr/ac-yr)	56,400	75,840	23,463	124,465	94,000	126,321	39,105	207,320	22,600	22,880	37,960	0
brine shrimp (lb/ac-yr)	46,170	69,255	21,870	106,025	76,950	115,425	36,450	176,985	19,324	-19,600	-29,400	0
COSTS & INCOME												
shrimp (\$/ac-yr)	295,627	405,888	258,853	675,338	428,881	580,829	356,201	928,929	182,371	162,856	121,476	80,887
energy (\$/ac-yr)	1,414	2,156	667	3,532	2,564	3,551	1,112	5 <i>,</i> 886	567	653	653	0
brine shrimp (\$/ac-yr)	34,627	48,594	16,402	79,693	57,710	80,989	25,837	132,738	14,443	0	0	0
cost \$/lb	5.47	5.01	4.79	5.44	4.77	4.30	3.96	4.49	7.25	8.31	4.13	2.75
net cost (\$/lb - products)	4.81	4.38	4.48	4.77	4.10	3.68	3.66	3.82	6.66	8.28	4.11	2.75
ENERGY												
feed (2.2 kw-hr/lb)	213840	320760	213840	491040	356400	534600	356400	819720	99563	0	0	116519
sugar (1.0 kw-hr/lb)	97200	145800	0	223220	162000	243000	0	372600	0	0	0	0
electrical	243,000	307,150	191,970	473,040	405,000	511,920	319,950	788,400	81,000	89,100	133,650	98 <i>,</i> 550
heating	172,685	350,822	390,237	0	111,771	298,032	320,333	0	277,331	387,781	0	0
brine shrimp (3.96 kw-hr/lb)	-182833	-274250	-86605	-419859	-304722	-457083	-144342	-700861	-76523	-77616	-116424	0
gas energy (@ 100%)	-1,414	-2,156	-667	-3,532	-2,564	-3,551	-1,112	-5 <i>,</i> 886	-567	-653	-653	0
NET ENERGY (kw-hr/lb)												
production energy (kw-hr/lb	7.7	8.1	10.8	3.8	5.7	6.0	7.1	3.8	14.3	24.3	4.5	3.4
net energy (feed and sugar)	13.5	13.9	14.7	9.6	11.5	11.8	11.1	9.6	18.2	24.3	4.5	7.3
life cycle energy (-products)	10.0	10.5	13.1	6.2	8.1	8.3	9.5	6.2	15.1	20.3	0.6	7.3
feed replacement (%)	0.86	0.86	0.41	0.86	0.86	0.86	0.41	0.86	0.77	100.00	100.00	0.00
replacement (%-feed cost)	45	42	21	45	45	42	20	45	40	100	100	0.00

Projected Annual Cost Contributions; % of Annual Income for 12 Systems

SYSTEM	FS2	FS3	FN2	FS4.6	FS2	FS3	FN2	FS4.6	FA2	PAS	TPAS3	TP3
FEED	23	25	23	20	23	25	27	24	15	0	1	39
SUGAR	15	17	0	13	15	17	0	16	0	0	0	0
HEATING	1	2	8	0	1	2	4	0	8	12	0	0
ELECTRICAL	9	9	7	7	9	9	9	8	4	5	11	12
STOCKING	14	18	9	15	14	18	17	18	6	5	11	16
LABOR	8	7	15	9	8	7	11	6	18	22	45	15
DEPRECIATION	21	16	26	24	21	16	22	18	33	37	23	11
INTEREST	9	7	12	12	9	7	10	10	16	18	10	6
Capacity	27K	27K	27K	27K	45K	45K	45K	45K	12K	9.8K	9.8K	9.8K

Carbohydrate~ 2/3 of feed Depreciation~ feed

Projected Shrimp Cost and Energy Footprint/lb

	System	Season days	Capacity Ibs/ac	Production lbs/yr	Capital \$1000/acr	Production e \$/lb	Energy kw-hr/lb
				•			
1)	FS2(27)	200	27,000	54,000	613	4.81	7.7/10
2)	FS3(27)	237	27,000	81,000	613	4.34	8.1/10.5
3)	FN2 (27)	237	27,000	54,000	573	4.48	10.8/13.1
4)	FS4.6(27)	365	27,000	124,200	1,522	4.77	3.8/6.2
5)	FS2(45)	200	45,000	90,000	694	4.10	5.7/8.1
6)	FS3(45)	237	45,000	135,000	694	3.63	6.0/8.3
7)	FN2(45)	237	45,000	90,000	629	3.64	7.1/9.5
8)	FS4.6(45)	365	45,000	207,000	1,642	3.82	3.8/6.2
9)	FA2(12.6)	200	12,600	25,200	532	6.65	14.3/15.1
10)	PAS2(9.8)	220	9,800	19,600	531	8.27	24.3/24.3
11)	TPAS3(9.8) 365	9,800	29,400	220	4.11	4.5/0.6
12)	TP3(9.8)	365	9,800	29,400	92	2.75	7.3/7.3

*Brune, D. E., C. Tucker, M. Massingill, and J. Chappell, Partitioned Aquaculture Systems, pp 308-342 in J.H. Tidwell, editor, <u>Aquaculture Production Systems</u>, Wiley-Blackwell, Oxford, UK, 2012.

+Braga, André, V., Magalhães, T.C., Morris, B. Advent, and Tzachi M. Samocha, Use of a Non Venturi Air Injection System for Producton of *Litopenaeus vannamei* in Biofloc Dominated Zero Exchange Raceways, Aquaculture 2013, Nashville, Tennessee

Asian Shrimp Production Costs* (2014 US-\$/lb)

Intensive Systems; 10-15% water exchange/day, 1.6 crops/yr, 2,500 – 9,500 lb/ac-yr Philippines 4.71/lb Thailand 4.57/lb China 3.26/lb India 4.39/lb Indonesia 4.30/lb Average = \$4.25/lb

Semi-Intensive; 0-15% water exchange/day, 1.6 crops/yr, 760 – 4500 lb/ac-yr

 China
 2.13/lb

 Philippines
 4.35/lb

 Indonesia
 4.53/lb

 India
 4.82/lb

 Average = \$3.96/lb

Extensive Systems; No water exchange, 1.6 crops/yr, 100 - 650 lb/ac-yr

China	\$2.02/lb			
Thailand	2.40/lb			
Philippines	\$4.83/lb			
Indonesia	4.54/lb			
India	4.77/lb			
Average = \$3.71/lb				

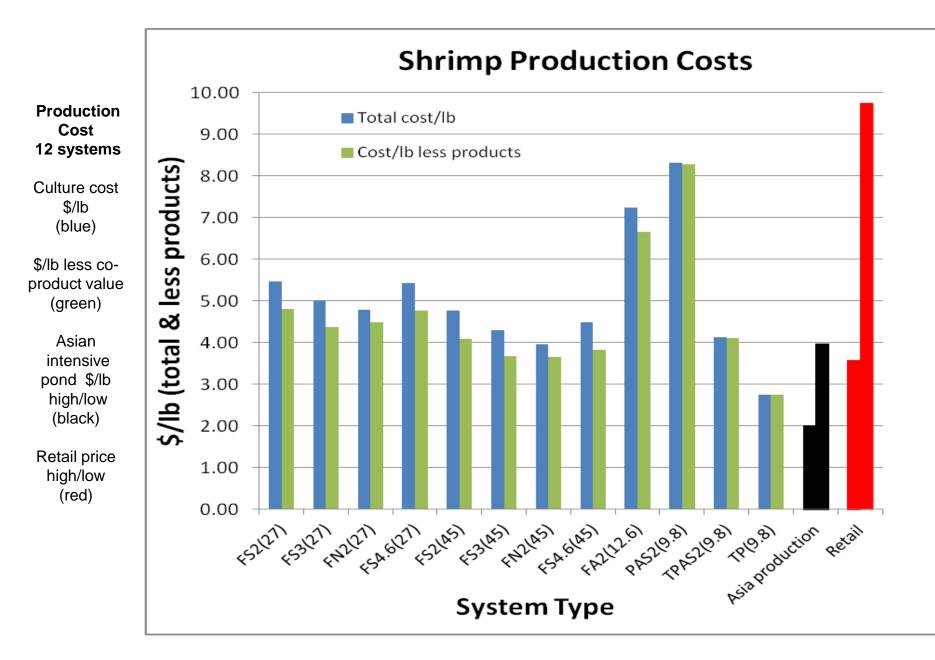
* Ling, B.H., Leung, P.S., Shang, Y.C., Inter country comparison of shrimp farming systems in Asia, World Aquaculture 96, Bangkok Thailand. 1996

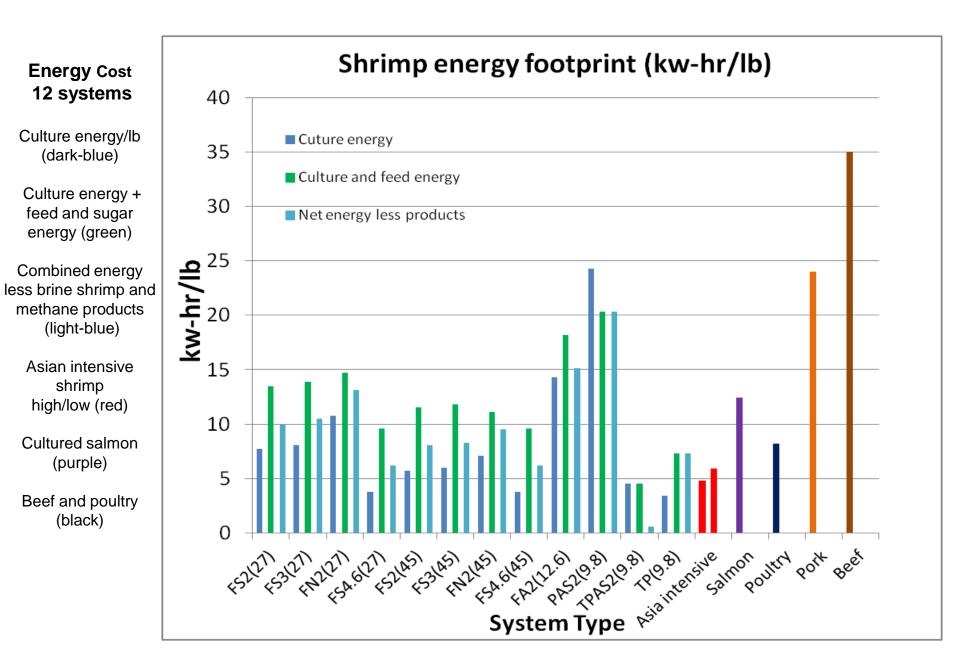
2014 Shrimp Retail Value vs. Production Cost (US-\$/Ib heads-on)

HyVee (on-ice)

55 ct, 8 gm, India \$6.50
55 ct, 8 mg, Thailand, \$7.15
18 ct, 25 gm, Thailand, \$9.75
18 ct, 25 gm, US caught, \$8.45

Walmart (frozen)


70 ct, 6.5 gm, India,	\$5.87
35 ct, 12.8 gm, India,	\$4.33
28 ct, 16 gm, India,	\$3.58
26 ct, 17 gm, Thailand,	\$8.10
32 gm, 14 ct, Indonesia,	\$8.37


Retail price; \$3.58 - 9.75/lb, Ave = \$6.90/lb

Asian production cost; 2.02 - 4.83/lb, Ave = 3.97

MU Projected Costs;

Bacterial Temperate-PAS	\$3.63 - \$4.77/lb
Algal Temperate-PAS	\$8.27/lb
Algal Tropical PAS	\$4.11/lb
Tropical Pond	\$2.75/lb

Summary

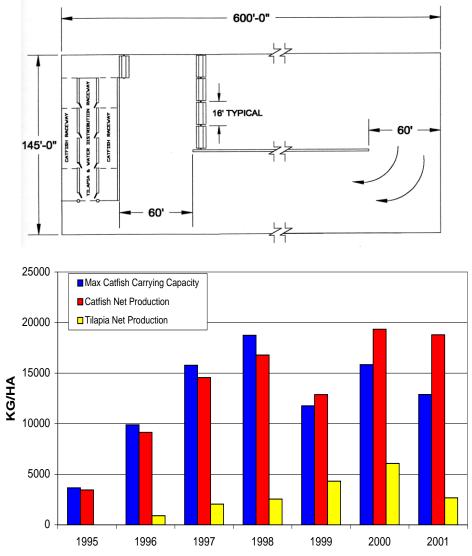
- Suspended cell culture = water treatment and animal culture in same footprint
- Algal to 300 lb/ac-day, Nitrifying at C/N = 9/1, Heterotrophic = C/N = 12-15/1
- Biofloc = special case of SCC (typically brown water)
- Algal systems must be stabilized with filter-feeders
- Nitrifying solids production = 10% of algal or heterotrophic
- Aeration energy = 30 hp/ac (intensive ponds) to 80-100 hp/ac super intensive
- Mixing of solids and water limiting factor in intensification in ponds
- Capital investment = \$100,000/ac ponds to \$1.6 million/acre insulated building
- Production = 30,000 lbs/ac-yr ponds to 200,000 lbs/ac-yr super intensive
- Productions costs = \$2.00-4.00 / lb ponds to \$4.50 / lb super intensive
- Processing, transport, distribution shrimp ~ significant issue

Deployment/Outreach Questions and Challenges

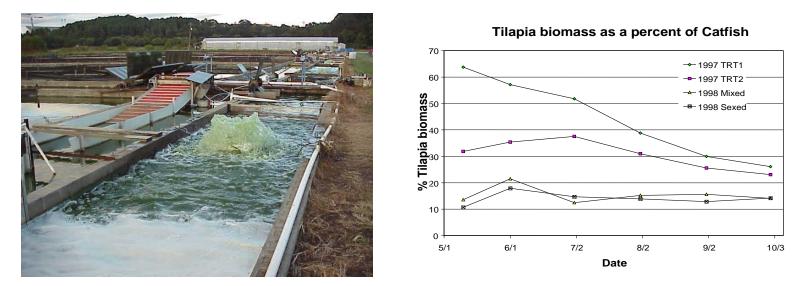
- Small shrimp producers need nursery
- Larger shrimp producers need hatchery
- Tilapia needed in outdoor or green water systems
- Significant capital investment required; Banks not likely to support unproven technology; Who?
- Will U.S. consumers pay more for sustainably produced, locally reared, higher quality fresh seafood? How much more?
- Producers will need network for rapid distribution of unfrozen product; Local stores, farmers markets, restaurants?

Tilapia in High-Rate Aquaculture Processes

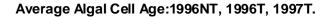
UNIVERSITY OF MISSOURI Extension

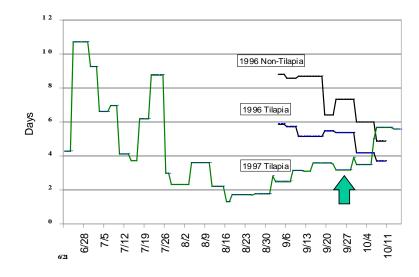

D. E. Brune

Professor, Bioprocess and Bioenergy Engineering University of Missouri, Columbia, MO. 65211

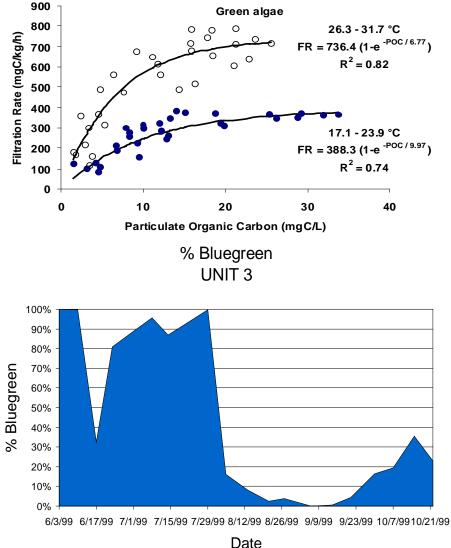

Development of the Partitioned Aquaculture System at Clemson University; 1987-2008 - Green-water for Catfish Production

Tilapia co-culture for management of algal production in a "High-Rate Pond" modified for fish production, increasing carry capacity to 19,000 lb/acre




Cyanobacteria elimination and control of algal cell age and algal density

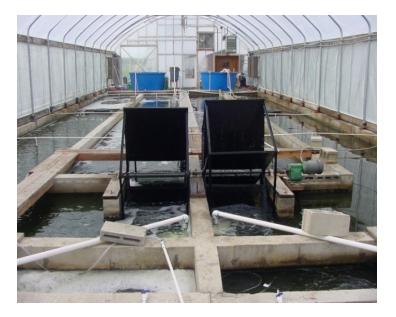
Tilapia assisted biosedimentation of algal biomass providing control of algal density (SD ~ 12-18 cm) and cell age (3-4 days) increasing water treatment capacity and reducing water column

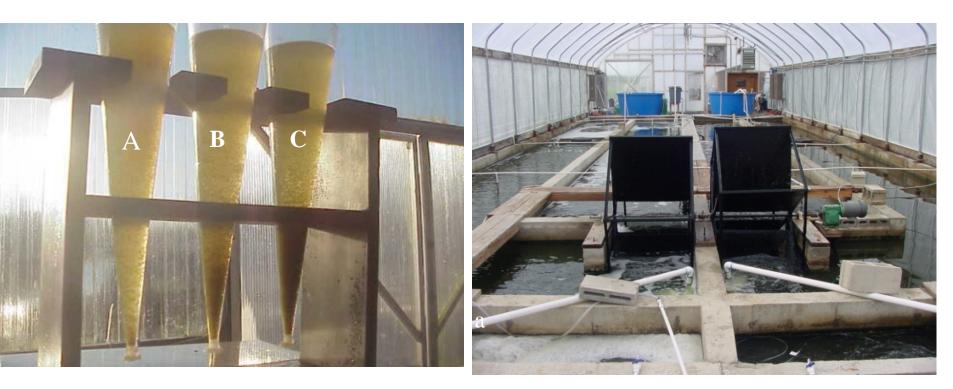


Cyanobacteria and zooplankton reductions

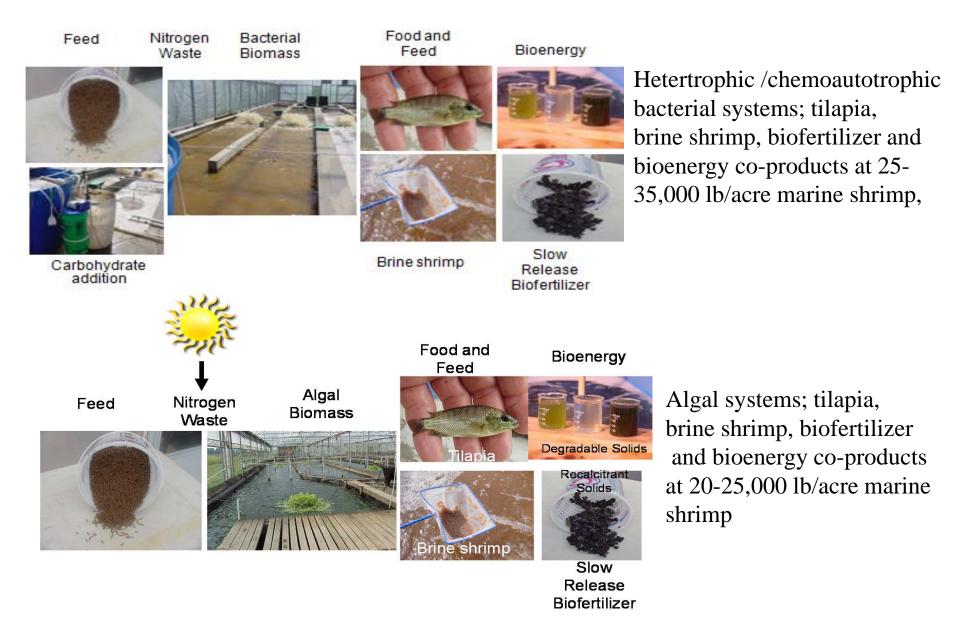
Tilapia filtration reduced Cyanobacteria dominance and zooplankton population, stabilizing culture and reducing fish offflavor events

Zero-Discharge Sea Food Production


Clemson University 2001-2008; Green and brown-water marine shrimp production at 25,000 to 35,000 lb/acre-120 day cycle



University of Missouri, 2010-2014; Brown-water marine Shrimp production at 35,000+ lb/acre-120 day cycle



- a) Tilapia filtration unit
- b) White shrimp culture unit
- c) Shrimp culture without tilapia filtration

- a) Brine shrimp culture for fish meal replacement (blue tanks)
- b) Tilapia raceways (in fore ground)
- c) Deep tanks (6-ft) for aerobic and anaerobic water treatment

Zero-discharge; convert algal and bacterial biomass into co-products

Tilapia in High Rate Aquaculture; Advantages

- Stabilized algal culture, control of algal cell age, density and species
- Zooplankton elimination/reduction
- Net nitrogen and phosphorus removal/recycle
- Net organic removal, pond respiration reduction, net oxygen production
- By-product/bioenergy yield
- Enabler of zero-discharge aquaculture

Disadvantages

- Handling and culture of second fish
- Over-winter of tropical fish
- Mono-sexed tilapia or takeover of culture system
- State permits may be required, state prohibition possible
- Potential reservoir of fish disease

*more detail available in Perschbacher and Stickney

Brune, D. E., Tilapia in High Rate Aquaculture Processes, Chapter 12 in, <u>Tilapia in</u> <u>Intensive, Co-culture</u>, P.W. Perschbacher and R.R. Stickney, Editors, John Wiley & Sons, Inc., In press 2015.