WATER QUALITY FOR FISH CULTURE

at

Aquaculture 101; Sustainable Seafood Production in the Midwest MU Bradford Farms; July 11-12

> Charles E Hicks Pinnacle Aquatics LLC <u>chchicks82@gmail.com</u>, 573-680-5047

Water Quality-Definition

Summation of all physical, chemical, biological, and aesthetic characteristics of water that influence beneficial use.

Characteristics of water in production systems that impacts survival, growth, and production of aquaculture species, influences system management decisions, and may cause environmental impact, or reduce product quality and safety.

Water Quality and Aquaculture Production

Goal = manage water quality maximizing aquaculture production

Inputs for increasing production impacting water quality

- Chemical fertilizers added to ponds/systems
- Organic materials added to ponds/systems
- Additions of manufactured feeds

Important water quality parameters in aquaculture

- Dissolved Oxygen/CO₂ Dissolved gases of primary importance in aquaculture.
- Ammonia, Nitrite and Nitrate resulting from respiration/degradation of protein; NH3 and NO2 potentially toxic
- Alkalinity- the sum of titratable bases in the water; bicarbonate (HCO₃) and carbonate (CO₃) predominate bases.
- Hardness- sum of calcium and magnesium expressed as mg/L CaCO₃; Important for building bones and shell.
- Conductivity = measure of total dissolved solids (freshwater), measure of salinity (saltwater)

Alkalinity

- Alkalinity is a measure the substances in water that have "acid-neutralizing" ability.
- Alkalinity is a measure of solution's power to resist change in pH; pH = strength of an acid or base.
- Alkalinity = acid-neutralizing capacity of water , includes all bases down to pH 4.5.
- Alkalinity is typically expressed as as mg/l of CaCO3

Industry Alkalinity Values

Industry and Process	Recommended Maximum Total Alkalinity (in mg/L CaCO ₃)
Carbonated beverages	85
Food products (canning)	300
Fruit juice	100
Washing diapers	60
Pulp and paper making(ground-wood process)	150
Rayon manufacture	50
Tanning hides	135
Textile mill products	50-200
Petroleum refining	500

Daily Changes in pH

Daily pH changes of pond water

From: [Boyd and Tucker (1998)]

Alkalinity Summary

- Waters with low alkalinity have little capacity to resist changes in pH.
- Total alkalinities below 10 mg/L are highly sensitive to acidification.
- Aquaculture ponds should have alkalinity of at least 20 mg/L; 100 to 200 mg/l better. Alkalinity can be increased by adding lime or sodium bicarbonate to pond
- Buffering capacity (alkalinity) reduces effects of diurnal changes in carbon dioxide.
 - 1. Removal of CO₂ at day (by photosynthesis) causes pH to increase
 - 2. Addition of CO₂ at night (by respiration) causes pH to decrease

Dissolved Oxygen

- Dissolved oxygen concentration is major limiting factor in aquaculture production systems.
 - 1. Important in aerobic respiration.
 - 2. Relatively low levels of oxygen available in the water.
- Oxygen used by aquatic organisms is gaseous which is not very soluble in water.
 - 1. High rates of biological action deplete supply.
 - 2. Natural replenishment is relatively slow.

Oxygen(con't)

- Solubility of oxygen in water dependent upon water temperature, atmospheric pressure, and salinity.
 - 1. The higher the temperature the less the solubility.
 - 2. As pressure decreases (altitude) solubility declines.
- Increase in air-water interfacial area (turbulence) is used to transfer O₂.
 - 1. When the oxygen tension in water is less than air oxygen will diffuse into water.
 - 2. Oxygen tension greater, O2 diffuses out of water

Factors Impacting O₂ Levels in Aquaculture Systems

- 1. O2 saturation level and airwater gas transfer rate
- 2. Sediment O_2 uptake rate
- 3. Animal respiration rate
- 4. Plankton respiration
- 5. Photosynthesis

Temperature	DO saturation	Temperature	DO saturation
°C	ma/L	°C	ma/L
0	14.6	20	9.1
1	14.2	21	8.9
2	13.8	22	8.7
3	13.4	23	8.6
4	13.1	24	8.4
5	12.7	25	8.2
6	12.4	26	8.1
7	12.1	27	7.9
8	11.8	28	7.8
9	11.5	29	7.7
10	11.3	30	7.5
11	11	31	7.4
12	10.8	32	7.3
13	10.5	33	7.2
14	10.3	34	7
15	10.1	35	6.9
16	9.8	36	6.8
17	9.6	37	6.7
18	9.4	38	6.6
19	9.3	39	6.5
20	9.1	40	6.4

Aeration Devices; Typical O2 transfer rates = $1-2 \text{ lb O}_2/\text{hp-hr}$

Oxygen Uptake

- Sediment O2 demand = Aerobic decomposition of organic mater. Oxidation of reduced inorganic substances (oxidation of ammonia to nitrate).
- Animal respiration
 - Animal size, species, both important, smaller fish per body weight consume more because feeding rate is higher.
 - Higher consumption with greater activity.
 - Higher consumption with higher temperature.

Fish Oxygen Consumption

Cycling of Nitrogen

- Four processes control cycling of nitrogen through biosphere:
- 1) Nitrogen fixation
- 2) Decay
- 3) Nitrification
- 4) Denitrification
- Microorganisms dominate these processes

Nitrogen cycle in a saltwater aquaria

Nitrogen Cycling

- In aquaculture begins with the decomposition of organic matter
- Major source in aquaculture = feed
- Excreted as amino acids or in soluble form primarily as NH₃/NH₄⁺, other compounds.

Respiration/Decompostion

- Proteins pass through food webs, metabolism produces organic nitrogen compounds that return to the environment, chiefly in excretions.
- The final beneficiaries are microorganisms of decay.
- Microorganisms breakdown organic nitrogen into total ammonia nitrogen (TAN) = $NH_4 + NH_3$.

Release of NH₃

- NH₃ released organic protein via microbial activity.
- Process referred to as deaminification or ammonification.
- NH₃ released to water (mineralization)
- ammonification is *heterotrophic*, under aerobic or anaerobic conditions.

Ammonia (NH₃) Toxicity

- Short-term (acute) toxicity ranges from 0.5-3.8 mg/L for most fish.
- Toxicity tolerance varies due to biological variability of different strains of species.
- Eggs are most tolerant (fish).
- Larvae least tolerant, older fish = more tolerant.
- Same probably holds true for invertebrates.

Nitrogen Equilibria; NH₃/NH₄

- Ammonia (NH₃) toxic to fish/invertebrates.
- pH affects proportion of NH₃/NH₄⁺.
- As pH increases, NH₃ increases.
- Example TAN of 1.5 mg/L, 26°C, pH = 8.6
- NH₃/L = 1.5 x 0.1942 = 0.29 mg/l

 TABLE 2.16.
 PERCENTAGE UN-IONIZED AMMONIA IN AQUEOUS SOLUTION AT DIFFERENT

 pH VALUES AND TEMPERATURES

pH .	Temperature (°C)								
	16	18	20	22	24	26	28	30	32
7.0	0.30	0.34	0.40	0.46	0.52	0.60	0.70	0.81	0.95
7.2	0.47	0.54	0.63	0.72	0.82	0.95	1.10	1.27	1.50
7.4	0.74	0.86	0.99	1.14	1.30	1.50	1.73	2.00	2.36
7.6	1.17	1.35	1.56	1.79	2.05	2.35	2.72	3.13	3.69
7.8	1.84	2.12	2.45	2.80	3.21	3.68	4.24	4.88	5.72
8.0	2.88	3.32	3.83	4.37	4.99	5.71	6.55	7.52	8.77
8.2	4.49	5.16	5.94	6.76	7.68	8.75	10.00	11.41	13 22
8.4	6.93	7.94	9.09	10.30	11.65	13.20	14.98	16.96	19 46
8.6	10.56	12.03	13.68	15.40	17.28	19.42	21.83	24 45	27 68
8.8	15.76	17.82	20.08	22.38	24.88	27 64	30.68	33.90	37 76
9.0	22.87	25.57	28.47	31.37	34.42	37 71	41 23	44 84	49.02
9.2	31.97	35.25	38.69	42.01	45.41	48.96	52.65	56.30	60.38
9.4	42.68	46.32	50.00	53.45	56 86	60.33	63 79	67 12	70.72
9.6	54.14	57.77	61.31	64.54	67 63	70.67	73 63	76.39	79 29
9.8	65.17	68.43	71.53	74.25	76.81	79 25	81 57	83.68	85 85
10.0	74.78	77.46	79.92	82.05	84.00	85 82	87.52	89.05	90.58
10.2	82.45	84.48	86.32	87.87	89.27	90.56	91.75	92.80	93.84

Ammonia Toxicity

Species	96-hour LC ₅₀ (mg/L NH ₃)
Pink salmon	0.08-0.1
Brown trout	0.50-0.70
Rainbow trout	0.16-1.10
Largemouth bass	0.9-1.4
Common carp	2.2
Channel catfish	0.50-3.8
Shrimp	5.71

Safe long-term NH₃ (culture levels) Typically ~ 1/10 of acute or short-term levels

Aquatic Nitrogen Cycling

- Conversion of ammonia (NH₃) to nitrate (NO₃⁻) is via chemoautotrophic bacteria.
- First step by *Nitrosomonas* sp.
- second step by *Nitrobacter* sp.
- Both steps/reactions use NH₄⁺ and NO₂⁻ as an energy source, CO₂ as a carbon source.
- This is a non-photosynthetic type of growth.

Nitrification

- The term nitrification refers to the conversion of ammonium to nitrite followed by conversion to nitrate
- Nitrifying bacteria = chemoautotrophs.
- Bacteria gain energy oxidizing NH₃, using CO₂ as source carbon source synthesizing organic compounds.
- Nitrification produces acid, decreasing alkalinity

- 1. Uptake of NH₄ or NO₃ by organisms
- 2. Release of NH₄ by decomposition
- 3,4. Microbial exidation of NH₄ (yields energy in aerobic conditions)
- 5. Denitrification (NO₃ respiration) by microbes in anaerobic conditions (NO₃ is used instead of O₂ as the terminal electron acceptor during decomposition of organic matter)
- 6. Nitrogen fixation
- 7. Nitrate leaching from soil

Nitrite (NO₂⁻) Toxicity

Species	48- or 96-hr LC ₅₀ (mg/L NO ₂ -N)
	0.19-0.39
	0.88
	2.6
	7.1-13
	140
	160
Shrimp, freshwater	8.5-15.4
	45-204 mg/L

Nitrate (NO₃) Toxicity

Species Guppy Guadeloupe bass Chinook salmon Rainbow trout Channel catfish Bluegill Shrimp 96-hr LC₅₀ (mg/L NO₃-N) 180-200 1,260 1,310 1,360 1,400 420-2,000 Who knows???

Denitrification

- NO₃ in soil or water is converted to N₂, nitric oxide or nitrous oxide.
- This occurs under anaerobic conditions (anaerobic respiration).
- Presence of O₂ can reverse the reaction.
- mediated by bacteria (*Pseudomonas* sp., *Alkaligenes* sp. and *Bacillus* sp.)
- Denitrification produces base increasing alkalinity

