Autotrophic and Heterotrophic Water Treatment in Intensive and Semi-Intensive Aquaculture

D. E. Brune Professor of Bioprocess and Bioenergy Engineering University of Missouri, Columbia, Mo.

Overview of Aquaculture; Name, Yield, Feed, Aeration, Solids, Microbial Type, Solids, Inception Date

SYSTEM	Yield lb/ac	Feed lb/ac-d	Aeration h	p/ac_Typeg-C/m ² -d	VSS mg/l	Timeline
Extensive	1,000-2,000	10-30	Wind	Pond Algal (0.5-1)	10-20	1960
<u>Semi- Intensive</u>	4,000-6,000	50-100	1-2	Pond Algal (2-3)	50-100	1980
Intensive pond	10,000-12,000	100-150	6-20	Mixed (3-4)	100+	1990
PAS/SP	15,000-19,000	200-250	7-10	Enhanced Algal (6-12)	50-100	2000
Super nitrifying	40,000+	1,000	50-60	Nitrification (12-30)	300-400	2006
Super heterotro	phic 40,000+	1,000/600	60-80	Heterotrophic (20-50) 300-400	2006
Rapid Removal	30,000-44,639	1,500	67-76	Intense Nitrification	70-80	2020

Over 60 years, from "wild" pond photosynthesis, to enhanced algal, to enhanced nitrification/heterotrophic microbal management of ammonia with increasing aeration energy

Physical Configuration, Stocking, Projected Yields

Ponds, Tanks, Raceway/Hybrid Ponds

Wind-Aerated Stillwater Pond Production

- 1) Transfer rate: KLA (hr^{-1}) = 0.017 (Wind m/s) 0.014
- 2) Oxygen available: $mg-O_2/I-d = KLA (Cs-C)$
- 3) Wind = 5 m/s, delta O_2 = 5 mg/l, O_2 transfer = 45 lb/ac-d
- 4) Fish O_2 demand = 15-30 lb/ac-d at 1,000 to 2,000 lb/ac
- 5) Feed of 20- 40 lb/ac-d
- 6) Marine shrimp yields < 1,000 lb/ac
- 1) Boyd, C. E. and D. T. Coddington, Relationship between wind speed and reaeration in small aquaculture ponds, Aquaculture Engineering, Vol 11, No 2, 1992, 121-131.
- 2) Average wind speed at Stoneville MS
- 3) At 1.5% of body weight
- 4) At FCR of 2/1, and 200 day growing season

Mechanically Aerated Semi-Intensive Catfish Pond Production

Pond algae treatment 1-2 hp/ac, in 5-10 acre ponds 50-100 lb-feed/ac-d 4,000-7,000 lb/ac fish 1,000-2,600 lb/ac shrimp

⁽¹⁾ Field observed shrimp aeration needs = $1.1-1.5 \times O_2$ demand in 1 acre ponds to 2-3 x in 10 acre ponds

Example; commercially available 1-2 hp/ac

⁽¹⁾ Garcia, A, and D.E. Brune, 1991, Transport Limitation of Oxygen in Shrimp Culture Ponds, 10:269-279, *Aquacultural Engineering*.

Intensive Freshwater Catfish

Mixed treatment; Enhanced algal + nitrification 2.0 acres water, 5.5 ft deep 6-10 hp/ac aeration capacity

6 hp/acre x 24 hrs x 50% = 72 hp-hr x 1.5 lb O_2 /hp-hr = 108 lb- O_2 /ac-d

Fish density = 108 lb @ 0.017 lb O_2 /lb fish = 6,350-12,700 lbs/ac capacity = 2.6 - 5.3 hp/ac-d ⁽¹⁾

Feed =20,000-28,000-lb/season = 100-160 lb/ac-d = 2.6- 4.4 hp/ac

¹⁾ Boyd, C.E., S Chatvijitkul, and D. A. Davis, Understanding oxygen demand of aquafeeds,

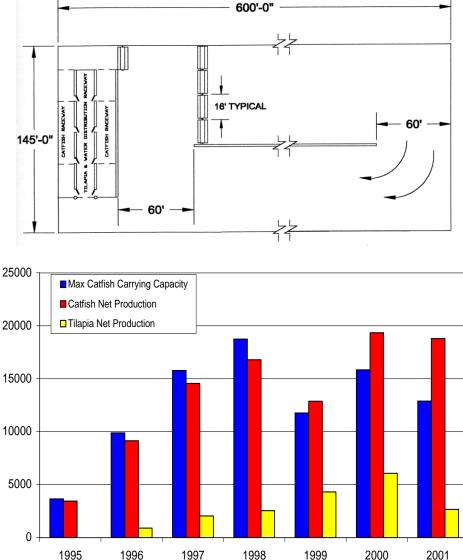
Intensive Marine Shrimp Ponds

Stocking = 100-150/m² Yields = 8,000-12,000 lb/acre-100-130 days Feed/organic rate = 100-200 lb/ac-day Aeration = 15-30 hp/ac Capital = \$60,000- \$150,000/acre Microbial type = algal/heterotrophic or algal/nitrifying

Water depth = 5-6 ft ADVANTAGES = Lowest cost intensive production

DISAVANTAGES = Marine tropical location needed, water input /discharge or treatment ponds needed, potential environmental impacts, production intensity limited by water mixing and solids sedimentation

Aquasol consultants, FL


Marine Shrimp, China

Coastal Belize

Partitioned Aquaculture System; Enhanced Algal Treatment in "High-Rate Ponds"

KG/HA

7-10 hp/ac 100-280 lb-feed/ac-d 15,000-18,000 lbs/ac yield Tilapia co-culture for algal species and density control

MS Split-Ponds Freshwater Catfish; Enhanced Algal Treatment, at Reduced Cost

6-20 hp/ac

14,000 lb/ac typical production

120-280 lb/ac-d feed 7-20 acres with 25% fish culture volume

Paddles and screw pumps to move water

Super-Intensive Shrimp Production in Tanks

Stocking = 200-400/m² Yields = 25,000-45,000 lb/acre-100-120 days Feed/organic rate = 400-1000 lb/ac-day Aeration = 60-100 hp/ac Capital = highly variable Microbial type = heterotrophic or nitrifying (indoor) ADVANTAGES = Flexible size of operation, control over inventory and harvest schedule, multiple batch production, independent/isolation possible, zerodischarge, good learning platform

DISAVANTAGES = Not hydrodynamically scalable, Low water surface area to enclosure ratio, Not well suited to automation

Dairyland Shrimp LLC, Wisconsin,

Heterotrophic biofloc, saltwater zero-water exchange, clarifying tanks, 120 day grow-out to 20 gram shrimp

Blue Oasis Shrimp, Las Vegas, Water treatment not described, out of business 2016?

The Drive to Limited/Zero-Discharge Aquaculture

Animal agriculture recovers only a small fraction of feed-N

79 - 88% nitrogen discharged as pollutant

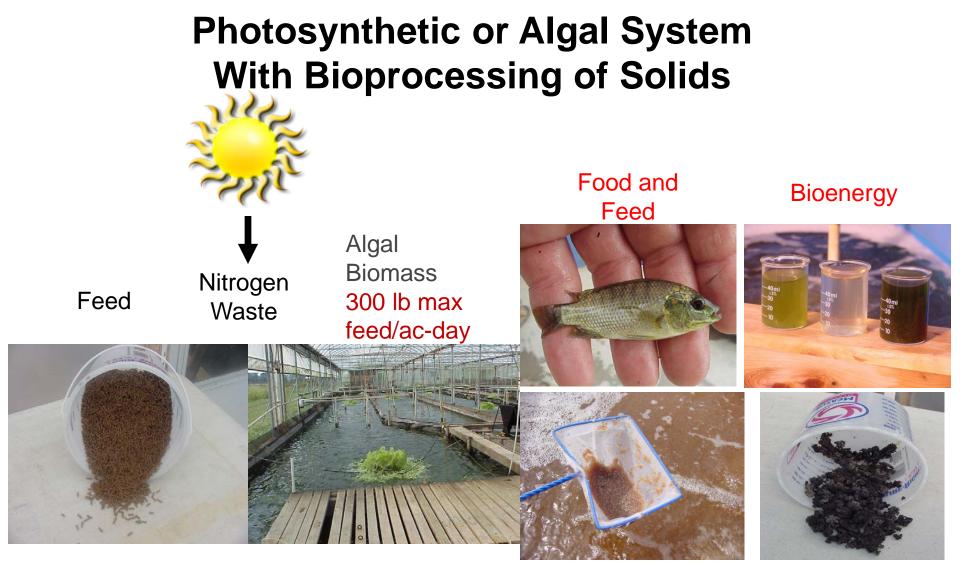
Soy, corn & fish-meal nitrogen inputs

12 - 21% protein nitrogen converted to fish or shrimp In limited or zero-discharge aquaculture , ammonia-N must be treated, recovered , or disposed of using one or more of three techniques;

Algal Photosynthesis (Green Water; Requires Sunlight)

 $NH_4 + CO_2 = C_{106}H_{263}O_{110}N_{16}P$ (Algal Biomass) + 106 O_2

Bacterial Nitrification (Autotrophic Biofloc; Slower Growth)


 $NH_4 + O_2 = C_5H_7O_2N$ (Bacterial Biomass) + $NO_3 + CO_2$

Heterotrophic Bacteria (Brownwater; Requires Carbohydrate)

 $NH_4 + C_6H_{12}O_6$ (Sugar) $+ O_2 = C_5H_7O_2N$ (Bacterial Biomass) $+ CO_2$

Algal and heterotrophic = yields large quantities of microbial biomass (~12,000+ lbs/acre dry sludge/cycle)

The solution; recover, convert microbial biomass to food, feed, fuel, and fertilizers

Brine shrimp as fish meal replacement Slow Release Biofertilizer

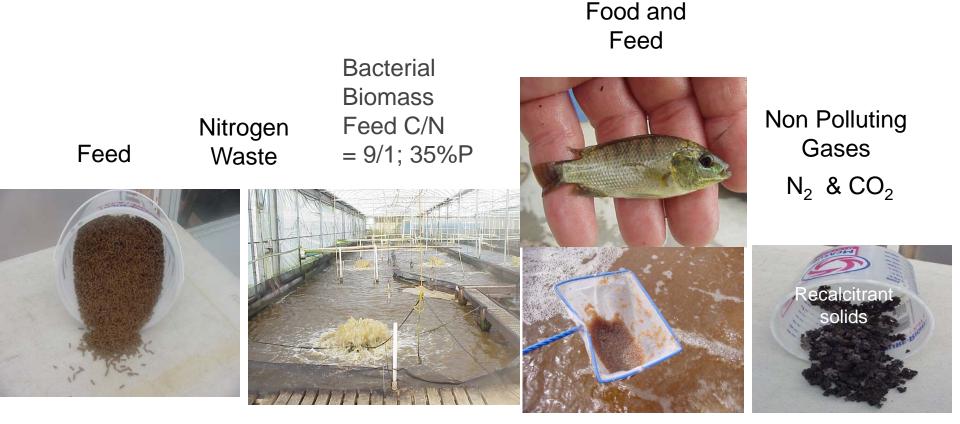
Heterotrophic System (30,000- 45,000 lb/acre yield)

Bacterial

Biomass

Bioprocessing for solids control Zero discharge, feed co-production

Carbohydrate addition


Feed

Nitrogen

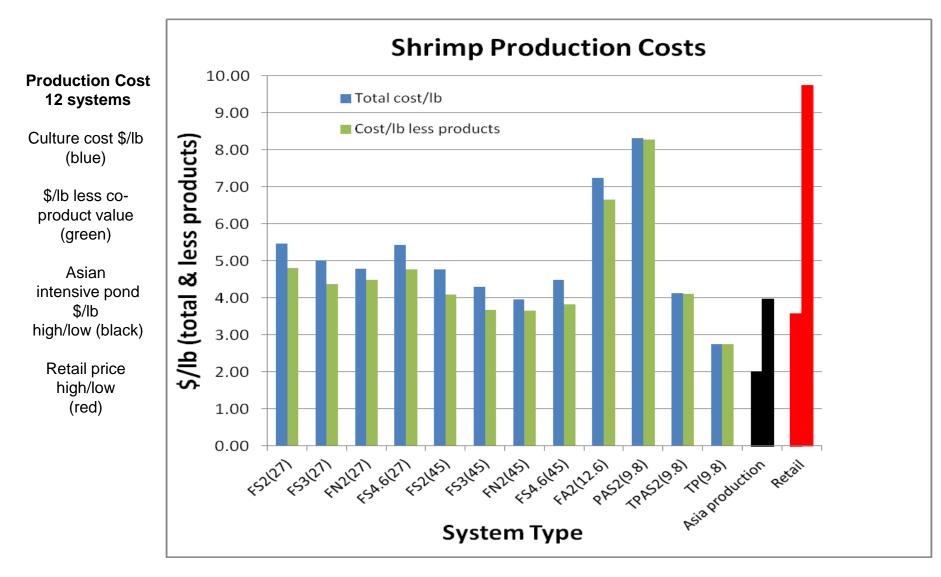
Waste

Bead filter processing for solids control Two water exchanges/cycle Sludge disposal needed

Nitrifying/Denitrifying (Autotrophic Bacterial) With Bioprocessing of Solids

Biofloc;10% solids production of heterotrophic Brine shrimp

Slow Release Biofertilizer


Overview of Aquaculture Intensification⁽¹⁾

Name, Yield, Feed, Aeration, Solids, Microbial Type, Solids, Inception date

<u>SYSTEM</u>	Yield lb/ac	Feed lb/ac-d	Aeratio	n hp/ac Type g-C/m ² -d	VSS mg/l	Timeline
Extensive	1,000-2,000	10-30	Wind	Algal (0.5-1)	10-20	1960
Semi- Intensive	4,000-6,000	50-100	1-2	Algal (2-3)	50-100	1980
Intensive pond	10,000-12,000	100-150	6-20	Mixed (3-4)	100+	1990
PAS/SP	15,000-19,000) 200-250	7-10	Algal (6-12)	50-100	2000
Super heterotrop	ohic 40,000+	1,000/600	60-80	Heterotrophic	300-400	2006
Super nitrifying	40,000+	1,000	50-60	Nitrification	300-400	2006
Rapid Removal	30,000-44,63	9 1,500	67-76	Intense Nitrification	70-80	2020

From 2,000 lb/acre Farming to 40,000 lb/acre Industrial Food Production

⁽¹⁾ Brune, D. E., Autotrophic and Heterotrophic Water Treatment in Semi-Intensive, Intensive and Super-Intensive Fish and Shrimp Culture, *The Shrimp Book*, Victoria Alday-Sanz, Editor, Nottingham University Press, In Press 2021.

Intensive to super-intensive production costs at the upper edge of open pond production costs, but well within retail prices. Consumer is driver in selecting more environmentally friendly, sustainable production at higher prices