Hay Storage & eeding Management

by Bob Schultheis Natural Resource Engineering Specialist

Questions to Consider

- Are you cutting hay for <u>quality</u> or <u>quantity</u>?
- Do you know what your bales weigh?
- Are you forage testing to confirm protein, energy and fiber levels?
- Are you tracking hay <u>consumption</u> or hay <u>disappearance</u>?
- What kind of hay feeders are you using?
 The goal is to get the most high-quality
 - forage into the animal.

Typical Forage Harvesting Losses Field curing -26%

Harvesting -14%

Storage -35%

Feeding -30%

30% Left

Optimum Forage Harvesting Losses

70% Left

Field curing -12%

Harvesting -8%

Storage

-5%

Feeding

-8%

Important Factors for Quality Hay

- Forage species
- Cutting stage of maturity at harvest
- Baling moisture content at baling
- Handling
- Storage conditions
 Feeding methods

Forage Moisture Affects Dry Matter Harvest & Storage Losses

Source: Hoglund (1964)

Shape Dictates Moisture Content at Baling

Small Square Bales

Large Round Bales

60 lbs. ÷ 21.3 sq.ft. = **2.8 lbs./sq.ft**. 1200 lbs. ÷ 142.5 sq.ft. = 8.4 lbs./sq.ft.

Maximum Hay Moisture Content (%) at Baling

Reference: MU Guide G3151 Using a Microwave Oven to Determine Moisture in Forages http://extension.missouri.edu/publications/DisplayPub.aspx?P=G3151

Round Bale Silage - Baling

Bale at
 50-60%
 moisture
 content

Forage Moisture Testing

Heater/fan dryer (Koster® unit) \$365

Photo Credit: www.enasco.com/product/C08633N

Electrical conductance moisture meter \$450

Photo Credit: www.enasco.com/product/C16283N

Microwave \$50 - \$100

Photo Credit: www.agry.purdue.edu/ext/forages/publications/ID-172.htm

Reference: Determining Forage Moisture Concentration http://pubs.ext.vt.edu/442/442-106/442-106.html

What Do the Round Bales Weigh?

Density = 9.2 lbs./cu. ft. Moisture content = 18% Weight per Dry matter Surface Area per bale Length Diameter Weight Surface Area Volume (feet) (lbs./sq.ft.) (lbs.) (feet) (lbs.) (sq.ft.) (cu.ft.) 4.0 4.0 **462** 75.4 50.3 6.1 379 4.0 5.0 723 102.1 78.5 7.1 593 5.0 5.0 903 117.8 98.2 7.7 741 5.0 5.5 1,093 133.9 118.8 8.2 896 5.0 1,301 8.6 6.0 150.8 141.4 1,067 5.5 5.5 1,202 142.5 130.7 8.4 986 6.0 6.0 1,561 169.6 169.6 9.2 1,280

What Do the Square Bales Weigh?

Small Square Bales Density = 10.3 lbs./cu. ft. Moisture content = 22%

						Weight per	Dry matter
Height	Width	Length	Weight	Surface Area	Volume	Surface Area	per bale
(in.)	(in.)	(in.)	(lbs.)	(sq.ft.)	(cu.ft.)	(lbs./sq.ft.)	(lbs.)
14.0	18.0	40.0	60	21.3	5.83	2.8	47
16.0	18.0	40.0	69	22.9	6.67	3.0	54

Large Square Bales Density = 10.3 lbs./cu. ft. Moisture content = 16%

						Weight per	Dry matter
Height	Width	Length	Weight	Area	Volume	Surface Area	per bale
(in.)	(in.)	(in.)	(lbs.)	(sq.ft.)	(cu.ft.)	(lbs./sq.ft.)	(lbs.)
36.0	36.0	96.0	742	114.0	72.00	6.5	623
36.0	48.0	96.0	989	136.0	96.00	7.3	831
48.0	48.0	96.0	1,318	160.0	128.00	8.2	1,107

Final Moisture Content of Baled Hay, %

	Relative Humidity, %				
Temperature, °F	30	50	70	80	
70	10	13	21	39	
80	8	12	20	38	
85	7	10	18	37	
95	5	8	16	36	

At a given temperature and relative humidity, there is a corresponding moisture content below which the hay will no longer release moisture.

Effect of Moisture at Baling Time on Heat Retention in Big Bales

Temperature °F

Source: University of Missouri, 1979

Critical Bale Temperatures

Bale Temperature	Considerations
<120 °F	Safe
120 °F – 160 °F	Caution: Monitor for temperature increase
>160 °F	Fire is likely!! Call fire department. Remove susceptible bales to safe area away from other hay

Reference: MU Guide G4575 Making and Storing Quality Hay http://extension.missouri.edu/publications/DisplayPub.aspx?P=G4575

Heating Losses

Mold damage

Maillard reaction (browning)

- Formation of sugar/protein polymers
- Lowers digestibility of available protein and sugars
- Test for available protein as well as total protein

Round Bale Storage Alternatives

Outside

- In field
- In rows
- Individual covers
- Wrapped
- Pyramid stack

Inside

- Pyramid stack
- On-end stack

Outside-Stored Round Bales

- Less dense \rightarrow more squat \rightarrow more damage
- Under trees \rightarrow less drying \rightarrow more damage
- ◆ Flat ground → less drainage → more damage
- ♦ Rounded sides touching → more damage
- ◆ Smaller diameter → more damage

Bale Density Affects Weathering

Precipitation = 3 inches Storage Time = 100 days

Moisture penetration = 16.3" 74% of original height Very difficult to handle

Moisture penetration = 3.5" 91% of original height Easy to handle

Estimating Round Bale Spoilage Depth

Actual spoilage pattern

Equivalent spoilage

Amount of Dry Matter in Outer Layers of Round Bales

Outer Layer Depth (inches)

Bale Dia.	2"	4"	6" Dry Ma	8" tter	10"	12"
(ieel)		70				
3.0	21	40	56	69	80	89
3.5	18	35	49	62	73	82
4.0	16	31	44	56	66	75
4.5	14	27	40	51	60	69
5.0	13	(25)	36	46	56	64
5.5	12	23	33	43	51	60
6.0	11	21	31	40	48	56

Which Has More Spoilage?

141 lbs. + 141 lbs. 31% 31% 273 lbs. 23%

Outside Uncovered Storage

Individual Bale Covers or Sleeves

- Trap excess moisture under plastic
- Lost bonnet spikes can puncture tires
- Wind or animal damage likely
- Better than no cover at all

Reduce Ground Contact

Pallets, poles or railroad ties

Net wrap

Moisture Distribution of Twine Wrapped Alfalfa/Grass Round Bales Stored on the Ground vs. on Pallets

Is Net-Wrap Worth the Cost?

- Costs \$.30 -\$.50 more per bale than plastic twine
- Installs quicker than twine; saves fuel & labor
 - 10 seconds vs. 60 seconds
- Sheds water 2X better than twine (3" twine spacing)
- Helps hold bale shape better
 - Less wind damage & bottom rotting
- Can save lost hay if handled often
- May save time at feeding
 - Depends on mud & ice cover
 - Less so with elastic edge

Moisture Distribution of Twine Wrapped vs. Net Wrapped Alfalfa/Grass Round Bales Stored on the Ground

Twine Wrapped

Net Wrapped

Economics of Net-Wrap vs. Twine

- Net-Wrap: \$210 per 64" x 7,000 ft. roll, 2¹/₄ wraps/bale
- Sisal Twine: \$40 per 9,000 ft. bale, 3" spacing
- Plastic Twine: \$37 per 20,000 ft. bale, 3" spacing

John Deere B-Wrap™ An Alternative to Indoor Storage

- Costs about \$5 more per bale than net-wrap
- Sheds rain and snow; protects from ground moisture
- Microscopic pores allow bale moisture to escape
- Installs like net-wrap using a special baler kit
- 1 layer net-wrap + 1 layer B-wrap
 + 2 layers net-wrap
- Works with baled hay & crop residues; best on high-quality hay
- May achieve similar losses as hay stored in barn

Pyramid Stacking + Rock Base

End ropes tie to post under stack. Rebar "Ts" in grommets hold sides. After 6 months outside storage

Large Round Bale Outside Storage

Ownership Cost Summary for Crushed Rock & Reinforced Plastic Tarpaulin

Assumed:

- a. 28' W x 120' L x 8" thick crushed rock pad
- b. Pad holds 200 bales weighing 1200 lbs. each, 66" L x 66" D (120 tons)
- c. Maintenance on rock and tarp is minimal for 3 year life.

Construction Cost::

a. 2"-4" dia. rock (50% <4" dia.), 140 tons @ \$19.00/ton = \$2,660
8" x 28' x 120' = 2240 cu.ft. = 83 cu.yd.
2240 cu.ft. x 125 lb./cu.ft. = 280,000 lb. = 140 tons
\$13.00/ton FOB plant, plus \$6.00/ton delivery within 15 mi.
b. Tarpaulin, 12-mil, reinforced polyethylene plastic = \$1,430

60' x 120' x \$0.20/sq.ft.

Total Cost

Prices as of 12/2010 --Rock cost ranges from \$8-\$14 per ton, depending on quarry Reference: www.tarpaflex.com/acatalog/Silver_Heavy_Duty_Poly_Tarps.html

= \$4,090

Building Planning

What type?

- Wood truss
- Steel truss
- Metal hoop

2x6 PURLINS

ON EDGE

COMMERCIAL "POULTRY HOUSE" TRUSS FRAMES SET 12' o.c.

METAL ROOFING

EARTH FLOOR (CONCRETE OR GRAVEL OVER FABRIC OPTIONAL)

CROSS SECTION SCALE: 1/8"=1"-0"

Location and Layout – Site Selection

Location and Layout – Legalities

Zoning
Building permits
Codes and inspections
Building Design

Dead loads

• Weight of building materials

- Assume 5 lbs./sq. ft. for open trusses
- Add more if ceiling or if trusses will support hanging items

Live loads (for the Ozarks)

- Snow (15 lbs./sq. ft. uniform loading)
- Add 5 lbs./sq. ft. for uneven loading (ice)
- Wind (90 MPH minimum)

Total load = 25 lbs./sq. ft. minimum

Buildings – How They Fail

Live Load – Wind Loading Pressures

- Design for 90 MPH winds
- Not tornado-proof

Maximum Spacing (ft.) of Posts on Closed Gable Roof

No. 2 Southern Pine	Eave Height (ft.) with 90 MPH Wind Speed			
Post Size	10'	12'	14'	16'
6x6	5.7	NR	NR	NR
6x8	10.5	7.3	5.4	4.1
6x10	16.9	11.7	8.6	6.6
8x8	14.4	10.0	7.3	5.6

NR = Not Recommended

Use ACQ-approved fasteners

Frost depth = 30 in.

Reference: NRAES-1 Post-Frame Building Handbook

http://extension.missouri.edu/publications/DisplayPub.aspx?P=NRAES1

Post Embedment Depth (in.) for Buildings up to 60 ft. wide

Reference: NRAES-1 Post-Frame Building Handbook

http://extension.missouri.edu/publications/DisplayPub.aspx?P=NRAES1

Beam & Footing Sizing

40' wide barn 10' post spacing 25 psf roof load

Beam load: (40' \div 2) x 25 psf = 500 lb./ft. = 6x10 beam

Footing load: 10' x 500 lb.ft. = 5000 psf = 20" dia. footing

Pressure-Treated Lumber

- ♦ CCA → Chromated Copper Arsenate
- ACQ-C → Alkaline Copper Quat Type C
- ♦ ACQ-D → Alkaline Copper Quat Type D Carbonate
- ◆ CBA-A and CA-B → Copper Azole Types A and B
- ◆ SBX/DOT → Sodium Borate
- Zinc Borate
- MCQ → Micronized Copper Quat

Use hot-dip galvanized or Types 304 or 316 stainless steel fasteners

Truss Anchorage

 One ½" bolt is equal to four 30d pole barn nails

Upper chord

Lower chord

Wind Bracing & Ceiling Support

Sizing Hay Barns

Small Square Bales

250 cu.ft. per ton

Large Round Bales

310 cu.ft. per ton

Inside Storage Stacked Square Bales

Small Square Bales 14" x 18" x 40", 60 bs., 22% M.C.

Flat (twines up): 6960 bales 163 tons dry matter

On Edge: 7026 bales 164 tons dry matter

40' W x 60' L x 16' H Hay Bam

Inside Storage - Pyramid

Large Round Bales

5'L x 5' D, 900 lbs., 18% M.C.

4 rows, 307 bales 113 tons dry matter 18 ft. high

3 rows, 252 bales 93 tons dry matter 13.6 ft. high

40' W x 60' L x 16' H Hay Bam

Inside Storage - On-End

40' W x 60' L x 16' H Hay Bam

Ownership Cost Summary for Clear-Span Wood or Steel-Truss Barn

Assumed:

- a. 40' W x 60' L x 16' H barn rated at 25 psf total roof load.
- b. Barn holds 200 bales weighing 1200 lbs. each, 66" L x 66" D (120 tons)
- c. \$7.50/sq.ft. cost = clear-span, colored metal, dirt floor, 15-20 year life.

Construction cost at \$7.50 per sq.ft., including labor = \$18,000

Annual Barn Cost (depreciated over 10-year life of 9% loan):

	Total Annual Cost	=	\$ 3,240
e.	Insurance (0.3% of construction cost)	=	54
d.	Taxes (1% of construction cost)	=	180
C.	Repairs (0.7% of construction cost)	=	126
b.	Interest ($2/3$ of annual interest rate on loan = 6%)	=	1,080
a.	Depreciation (\$18,000 ÷ 10 years)	=	\$ 1,800

Hoop Structures for Hay Storage

Specifications for this structure:

- 30 ft. x 102 ft. (widths range from 24-70 ft., lengths in 10-ft. increments)
- UV-treated polyethylene cover
- Clearance: 11'4" + wall height (11'4" + 6' = 17'4")
- Holds 270 bales weighing 1200 lbs. each, 66" L x 66" D (160 tons) in 6-5-4 pyramid
- Estimated 10-year life

Hoop Structures for Hay Storage

Item	Cost
Package (hoops, cover)	\$10,080
Posts (42 ea.)	1,260
Concrete for posts & lumber for side walls	1,260
Approx. materials cost	\$12,600
Approx. labor cost	\$ 5,700
Approx. Total Cost	\$18,300

Price estimate as of 12/2010

Round Bale Storage Economics

- Outside: 28'W x 120'L x 8"H rock pad, \$4,090 total cost (\$1,363/year)
- Inside: 40'W x 60'L x 16'H barn, \$18,000 construction cost (\$3,240/year for 10 years)

Annual Cost per Bale (\$)

Affordability of Storage (\$\$ value of hay lost)

	Hay price (per ton)				-	
Storage loss (%)	\$40	\$60	\$80	\$100	120	
5	2	3	4	5	6	Tom
10	4	6	8	10	12	= Tarp
15	6	9	12	15	18	Rock
20	8	12	16	20	24	- Barn
25	10	15	20	25	30	- Dam
30	12	18	24	30	36	
35	14	21	28	35	42	
40	16	24	32	40	48	

Note: Does not include losses associated with shrinkage or reduced quality.

Hay Feeding Losses Can Be Significant

Hay Wasted by Cows When Fed With and Without Racks

(Bell, S., and F.A. Martz., University of Missouri, 1973)

Type of Hay	Percent Wasted
Square bale in rack	7%
Large round bale in rack	9%
Large round bale without rack	45%

General Rules on Hay Feeding

Hay quality should be matched to animal needs

- Sort cattle into groups based upon stage of production
- Barns with side access work best for this
- Feed lowest-quality hay to dry or non-lactating cows
- Feed highest-quality hay to lactating heifers or cows
- Feed "pounds of hay," not "number of bales"

Feed outside-stored hay before inside-stored hay

• Animals fed high-quality hay early in the season will often refuse poor-quality hay when it is offered later

General Rules on Hay Feeding

- Feed coarse, less-dense, or high-quality outside hay before fine-stemmed, more-dense outside hay
- Feed hay in small amounts or in a feeder to minimize waste
- Feed hay in well-drained areas or move hay areas around
- Time feeding to force clean-up
 - Remember last part of hay is lowest quality watch body condition!

Herbicide Precautions of Feeding Hay

- Was hay treated with herbicide products containing aminopyralid?
 - GrazonNext® HL, Chaparral[™], Milestone®
 - Aminopyralid readily passes through livestock, with no effect on the animal
 - Land planted to sensitive broadleaf crops can be impacted by herbicide residue in urine and manure
 - Alfalfa, soybeans, sunflowers, cotton, tobacco, peanuts, sugarbeets
 - Tomatoes, beans, lettuce, cucurbits, potatoes, strawberries, grapes, flowers

Graphic credit: www.dowagro.com/range/eSteward/south_index.htm Reference: www.manurematters.com/na/en/

Herbicide Precautions of Feeding Hay

If feeding hay you raised:

- Stop feeding treated hay to cattle 3 days before moving them to sensitive fields
- Manure can be spread on pasture grasses, grass grown for seed, wheat or corn

If purchasing hay:

- Ask if the hay you are buying has been treated with a herbicide
- Do not use treated hay for compost or gardening
- As a hay producer:
 - Will the hay be used on-farm or will it be sold?
 - If sold, communicate precautions to the purchaser

Estimated losses (% of hay offered) from different hay-feeding methods

Bale Type	With 1-Day Supply	Rack 7-Day Supply	Withou 1-Day Supply	it Rack 7-Day Supply
Small square	3.9	4.9	6.7*	
Large round or square	4.9	5.4	12.3*	43.0*
Formed haystacks	8.8	15.0	22.6	41.0
Small round bales (fed in place on pasture)			10.0	30.0

* Bales spread or unrolled across pasture

Reference: MU Guide G4570 Reducing Losses When Feeding Hay to Beef Cattle http://extension.missouri.edu/explorepdf/agguides/crops/g04570.pdf

Advantages of Unrolling Hay

- Allows "boss" cows and timid cows to eat together
- Less hoof damage to feeding area because it is larger
- Controls the amount of hay allotted by portioning bales
- Can help overseed pastures with legumes
- Distributes fertilizer nutrients back on field

Bale Processors - Pros & Cons

- Myth: grinding forages will increase forage quality
- Quality may decrease, especially if hay is ground on a windy day (leaf loss)
- Decreased particle size = decreased rumen retention time = increased forage intake
- Allows a way to increase consumption of low to medium quality forages
- Allows a way to combine forages of differing quality for best use in a cow feeding diet
- Allows a way to manage problem forages, i.e., high nitrates
- Increased ownership cost of \$20K-\$25K equipment

Bale Processors

Feeding Method	100-cow herd, feeding cost per cow
PTO-powered bale processor	\$128.10
Unrolling bales on ground	\$113.90
Tapered-cone round bale feeder	\$101.80

Rolling bales out on the ground or shredding into windrows with a bale processor increased hay consumption and winter feeding cost without enhancing cow performance

Reference: North Dakota State University, 2005 -- www.ag.ndsu.edu/archive/dickinso/research/2004/beef04r.htm

Low-Labor Hay Ring Management

- Space bales 20 ft. apart in pasture or paddock corner
- Enclose bales with movable electric fence
- Feed bales in hay rings
- Use multiple rings to reduce "boss" cow problems
- Move fence & rings as needed

Feeder Design Affects Wastage

Cattle remove hay & step on it

Hay gets used as bedding

Feeder Design Affects Wastage

JAS 81:109 (Michigan State University, 2003)

Cone feeder 3.5% loss

Ring feeder 6.1% loss

Trailer 11.4% loss

Cradle 14.6% loss

Why the Big Differences?

- Slanted bars discourage cows from backing out of feeder
- Most dropped hay stays in feeder
- Boss cows less aggressive toward timid cows

Cone Feeder Pros & Cons

- Keeps hay off of the ground
- Saves 10-20% hay usage annually
- Saved hay stretches limited supplies
- Supports bales up to 2,500 lbs. in weight
- Top ring keeps cattle from pulling hay off of the top
- Much longer life compared to cheap hay rings
- Feeder weighs 600+ lbs. Cannot be easily moved by hand
- Higher initial cost

Can You Afford a Cone Feeder?

- Initial feeder cost = \$725
- Assume 10% hay savings on \$50 bale
- Assume 10-year life vs. 1-2 year life
- Saves \$500 for every 100 bales fed, or \$5,000 for 1000 bales fed over 10 years

Photo credit: Windmill Cattle Co., LLC

When might a cheap hay ring be better?.....

.....when feeding junk hay that the cows are going to waste. It's easier to move the ring by hand more frequently.

Hay Ring Waste Calculator Sheeted Bottom Steel Ring

Example:

50 cows for 3 months 30 lbs. hay per day \$60 per 1000 lb. bale

= \$1,053 hay wasted

Reference: www.noble.org/ag/tools/livestock/hay-ring

Hay Ring Waste Calculator Modified Cone Ring

Example:

50 cows for 3 months 30 lbs. hay per day \$60 per 1000 lb. bale

= \$429 hay wasted

Reference: www.noble.org/ag/tools/livestock/hay-ring
Cone Feeder Styles

Photo credit: fyi.uwex.edu

Photo credit: www.applegatelivestock.com

Photo credit: www.weldyenterprises.com

Photo credit: www.franklinwaterers.com/bale.html

Photo credit: www.titanwestinc.com/bextra.html

Cone Feeder Styles

Photo credit: jlhaysavers.com

Photo credit: www.haymizer.com/haymizer_I.htm

Photo credit: behlencountry.com

Photo credit: www.centurylivestockfeeders.com

Photo credit: www.klenepipe.com

Summary

- Harvest for quality or buy good hay
- Protect the hay from moisture
- Know what your bales weigh
- Test for nutrient quality before feeding
- Use some type of hay feeder if not limit-unrolling
- Select feeder that minimizes waste
 - At least solid lower panels and slanted bars
- Limit-feed in well-drained area
- Costly-to-buy feeders likely cheaper long-term

Questions?

Robert A. (Bob) Schultheis

Natural Resource Engineering Specialist Webster County Extension Center 800 S. Marshall St. Marshfield, MO 65706 Voice: 417-859-2044 Fax: 417-468-2086 E-mail: schultheisr@missouri.edu Web: extension.missouri.edu/webster UNIVERSITY OF MISSOURI

Extension

Program Complaint Information

To file a program complaint you may contact any of the following:

University of Missouri

- MU Extension AA/EEO Office 109 F. Whitten Hall, Columbia, MO 65211
- MU Human Resources Office 130 Heinkel Bldg, Columbia, MO 65211

USDA

 Office of Civil Rights, Director Room 326-W, Whitten Building 14th and Independence Ave., SW Washington, DC 20250-9410

"Equal opportunity is and shall be provided to all participants in Extension programs and activities, and for all employees and applicants for employment on the basis of their demonstrated ability and competence without discrimination on the basis of their race, color, religion, sex, sexual orientation, national origin, age, disability, or status as a Vietnam-era veteran. This policy shall not be interpreted in such a manner as to violate the legal rights of religious organizations or military organizations associated with the armed forces of the United States of America."

Some slides in this presentation provided by:

- -- University of Arkansas Extension
- -- University of Kentucky Extension