

Long Term Soil and Water Management in the High Tunnel

Patrick Byers Horticulture Field Specialist MU Extension - Webster County

Outline

- Introduction
- HT management practices in the Midwest
- Site preparation
- Water and irrigation management
- Fertility management
- Soil soluble salts management
- Conclusion

Site Selection and Preparation

- Site preparation is much like preparing a field for production (1-2 years in advance) – but you are planning out for several years
 - Removal of existing cover
 - Reduce weed seed bank
 - Cover crop
 - Soil test and amend as needed compost, minerals, other amendments
 - Select well drained soils; provide for drainage if needed

Water and Irrigation Management

NIVERSITY OF MISSOURI

tension

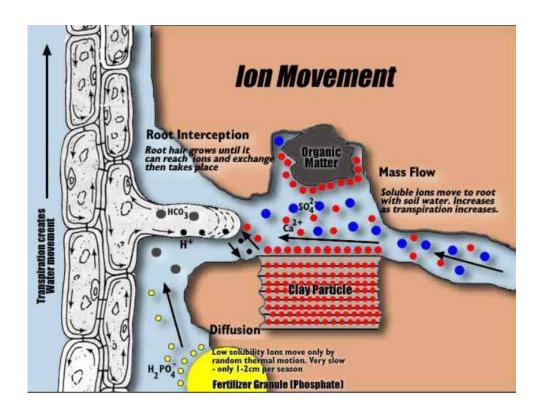
Compare and contrast water management in a high tunnel and in the field

Assess the Water Source

- Irrigation is necessary in the high tunnel
- Water quality is important, especially for long term
 - Alkalinity
 - Hardness
 - Pollutants
- Operation of drip irrigation systems must have good quality water
- Issues related to salts buildup can be related to water quality

Soil Moisture and Irrigation

- Drip irrigation advantages
 - Efficient use of water
 - Great way to deliver soluble nutrients
 - Keeps plants dry
- Drip irrigation challenges
 - Important to know the system, and ensure adequate wetting depth for wide ranging root systems
 - May not provide sufficient water to leach away soil salts



Soil Fertility Management

• Fertility

management is a balance of managing the following:

- Physical characteristics
- Chemical characteristics
- Biological characteristics

UNIVERSITY OF MISSOURI

Soil Fertility Management

- Why is the tunnel environment different than the field?
 - Raised beds and drip irrigation tend to concentrate root systems
 - Nutrients are delivered via fertigation, and are readily available and mobile
 - The nutritional status of the soil and the plant are dynamic and can change rapidly
 - Excess nutrients often remain in the rooting zone following a cropping cycle, and can accumulate

Fertility Management

- Successful fertility management in the high tunnel is related to several key components:
 - Soil Testing. Soil testing to determine the nutrient availability (pH) and balance is perhaps even more important than it is in the field.
 - *Compost.* Compost seems to be the most important soil fertility management tool for the high tunnel.
 - *Rotations.* The variation in crops grown in the tunnel will influence whether cover crops are needed to maintain soil fertility and health.

- Standard Field Soil Test
 - Conducted on a dry sample
 - Soil pH is tested on a separate sample.
 - Nitrate-nitrogen is not usually analyzed but can be if requested, which is a good idea for high tunnels.
 - The amount of K, Ca and Mg extracted are used to calculate an estimate of the total cation exchange capacity (CEC). The balance of the three elements is also calculated.
 - Phosphorus amount is estimated
 - Organic matter content is estimated
 - Micronutrients can be requested
 - Each lab will have an interpretation of the soil test

- Saturated Media Extracts (SME) test (MU greenhouse media test)
 - Conducted on a saturated soil sample
 - total soluble salts as electrical conductivity
 - soluble nitrogen as nitrate and ammonium nitrogen.
 - In addition the P, K, Ca, Mg, Na and Cl in parts per million (ppm) are commonly reported.
 - The micronutrients Fe, Mn, Zn, Cu, B and Mo may also be reported if requested.
- For rapid growth conditions with frequent irrigation, ie conditions often found in a high tunnel, the SME provides a picture of available nutrients at one moment in time

- Where is SME testing indicated?
 - Where nutrients applied as water-soluble fertilizers
 - Conventional greenhouse bench crops
 - Where nutrient content exceeds retention capacity
 - High proportion of "free salts"
 - Soils with accumulated nutrient salts
 - Irrigated desert soils
 - Long-term high tunnels

- Startup high tunnel
 - Essentially same as open-field soil management
 - Routine field soil test most appropriate
 - Optimize pH, OM, major & micronutrient reserves

- Established houses (1 + years)
 - Salt buildup can be a problem if not uncovered
 - Monitor total salt level to avoid desiccation damage
 - Open field soil N management does not apply
 - Monitor nitrate level to avoid over-fertilizing
 - Field soil test to address potential deficiencies
 - EC (SME) to monitor total nutrient salt buildup
 - Available nitrogen to address nitrate buildup

- Continuously-covered houses, usually 3+ years
 - Saturated Media Extraction + Organic matter
 - Water soluble (nutrient intensity) mgt. system
 - UVM interpretation guidelines
 - N-P-K recommendations to adjust SME levels
 - UVM guidelines

optimal soil nutrient levels

for greenhouse tomatoes or lettuce using the SME test

• pH	5.8 - 6.8

- nitrate-N
- P
- K
- Ca
- Mg
- soluble salts

125 – 200 ppm

- 8 13 ppm
- 175 275 ppm
- > 250 ppm
- > 60 ppm
- 1.5 3.0 (mmhos)

UNIVERSITY OF MISSOURI

Adapted from: Greenhouse Tomatoes, Lettuce and Cucumbers. by S. H. Wittwer and S. Honma. 1979 . Michigan State Univ. Press.

General interpretation guidelines for greenhouse growth media analyzed by the Saturated Media Extract Method.

	Low	Optimum	Very High
Soluble salts (dS/m)	075	2.0-3.5	5.0+
Nitrate-N (ppm)	0-39	100-199	300+
Phosphorus (ppm)	0-2	6-10	19+
Potassium (ppm)	0-59	150-249	350+
Calcium (ppm)	0-79	200+	
Magnesium (ppm)	0-29	70+	

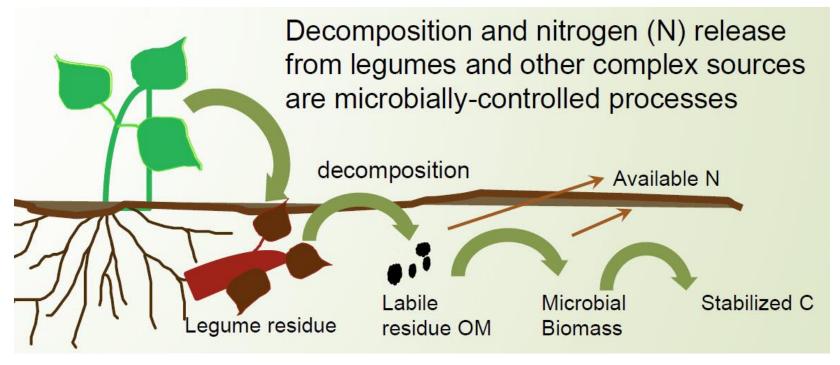
From: Recommended Test Procedures for Greenhouse Growth Media by Daryl Warnke, Michigan State University Extension. 2009.

Soil Testing – MU Soil Testing Laboratory

- Standard soil test
 - <u>http://soilplantlab.missouri.edu/soil/trucksoil.aspx</u>
 - Cost: \$12.50 plus ; extra charge for micronutrients and nitrogen
- SME testing (Greenhouse media testing)
 - <u>http://soilplantlab.missouri.edu/soil/greenhouse.aspx</u>
 - Cost: \$20 plus extra for micronutrients
- Compost testing
 - <u>http://soilplantlab.missouri.edu/soil/compost.aspx</u>
 - Cost: \$40 for complete package

- Summary of high tunnel soil testing
 - For newer houses, routine field soil analysis with addition checks on EC and available nitrogen
 - Continuously covered high-EC houses can be effectively managed using SME testing system and field soil testing as indicated
 - Field soil and SME testing systems access greatly different pools for most nutrients and are reported on a different basis. Each requires discreet interpretation and recommendation systems.

Organic Matter


- Crop production is often focused on fertigation to provide water and soluble nutrients – "feed the plant"
- A better long term strategy is focusing on long term soil health – "feed the soil"
 - Soil organic matter management
 - Maintenance of the soil food web

Organic Matter in the High Tunnel

• What happens to organic matter in the high tunnel?

Source: http://www.conservationwebinars.net/webinars/soil-health-in-high-tunnel-production

UNIVERSITY OF MISSOURI

Organic Matter

- Compost applications
 - Compost seems to be the most important soil fertility management tool for the high tunnel
 - Consider plant based compost rather than manures or manure compost; what about worm compost?
 - Consider a compost analysis to characterize the compost and to develop application rates
 - Annual recommended application rates vary 12 to 40 gallons per 100 square feet = 26 to 86 cu yd/ acre or about 10 to 40 ton/acre

Crop Rotations

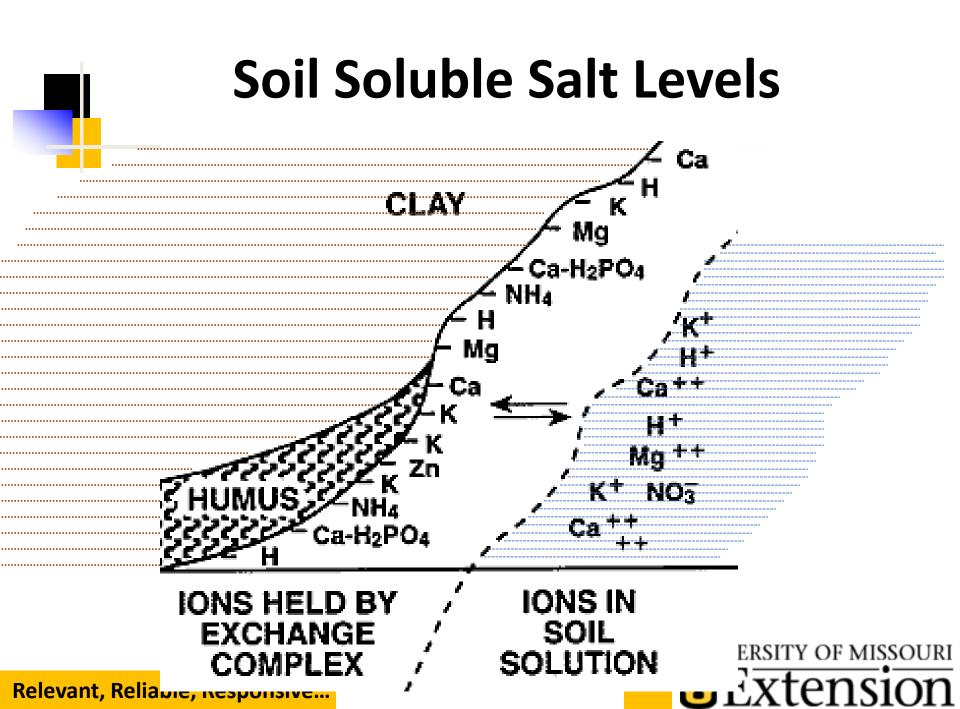
- Conflict between the need to rotate crops and economic realities
- Consider focusing on early and late plantings of cool season and warm season crops
- Effective rotations can take the place of cover cropping
- Crop family groups
 - lettuce and related leafy greens for baby leaf salad mix (multi harvest) or as heading crops (single harvest);
 - Brassicas for salad and cooking greens;
 - Solanaceous crops (tomato, pepper, eggplant);
 - Root crops (turnip, carrots, beets, radish) and
 - Cucurbits (cucumber, summer squash)

Cover Crops

- Cover crops
 - In general, once the structure is built, the production area is very valuable and the time between cash crops is short.
 - If a diverse crop rotation can be maintained, it is not essential to use tunnel cover crops.
 - If there is time in the schedule:
 - Buckwheat, Japanese millet or cowpeas are short term, warm season cover crops that break down quickly.
 - Oats can also be tilled in after a short time of grown and will grow in cool seasons
 - Use winter cover crops with caution, esp. for early plantings

Foliar Testing

- Useful as a monitoring tool in the dynamic high tunnel environment
- Useful as a diagnostic tool in the event of issues



UNIVERSITY OF MISSOURI

Magnesium deficiency

- What are soluble salts?
 - soluble forms of elements found in the soil Ca++, Mg++, K+, Na+, NH4+, H+, HPO4-, SO4-,
 NO3-, Cl-
 - These forms move up and down in the soil profile in response to water movement
 - In the hight tunnel environment, soluble salts can accumulate in the rooting zone

Salinity in the High Tunnel

• High tunnel soils are similar to desert soils

- no flushing rains!

Grower in Henderson or McLean county, photo courtesy of Dr. Tim Coolong, Univ. of Georgia Source: http://www.conservationwebinars.net/webinars/soil-health-in-high-tunnel-production

Source: http://aggie-horticulture.tamu.edu/vegetable/problem-solvers/cucurbit-problem-solver/leaf-disorders/salt-injury

Plants affected by high salt concentrations often appear dark green in the early stages, but rapidly develop marginal yellowing and necrosis of older leaves.

- Soluble salt levels in high tunnels can be a problem
 - Many fertilizers and manures are high in potential salts; low quality water can contribute soluble salts
 - Faster mineralization in the high tunnel environment, especially under black plastic
 - Carryover of available nitrogen (Nitrate)
 - Enhanced evaporation "wicks" salts to the surface
 - No natural rainfall to wash (leach) excess nutrients
 - Irrigation usually not sufficient to leach excess salts

- Addressing high soil soluble salt levels
 - Monitor soluble salt levels in the soil
 - Place tunnels on soils that are well drained, to promote leaching
 - Avoid over application of nutrients
 - Use nutrients with low salt indices; limit use of animal manures
 - Use irrigation water that is low in salt levels
 - Consider using a sprinkler system to establish seedlings or maintain cover crops
 - Rotate into crops that are less sensitive to salts
 - Leach out salts

 Salt indices for common fertilizers

Fertilizer	Salt Index
Ammonium Nitrate (34-0-0)	102
Sodium Nitrate (16-0-0)	100
Urea (45-0-0)	73
Ammonium Sulfate (21-0-0)	69
Calcium Nitrate	65
Diammonium Phosphate (18-46-0)	29
Monoammonium Phosphate (11-55-0)	27
Superphosphate (0-45-0)	10
Superphosphate (0-20-0)	8
Potassium Chloride (0-0-60)	116
Potassium Nitrate (14-0-47)	74
Potassium Sulfate (0-0-54)	46

Calt Indovas of Various Fortilizara

Adapted from: Foth & Ellis, Soil Fertility 2nd Ed.

Plant response to salinity levels

The table below illustrates the effects of salinity level on various vegetable crops.

Salinity Level (mmhos/cm)	Effects
Less than 0.40	Negligible salinity; salt sensitive cultivars of beans and carrots my exhibit effects
0.40-0.80	Very slightly saline; 25-50% decrease in yields of carrots, onions, peppers, lettuce
0.81-1.20	Moderately saline; seedling injury possible; 25-50% decrease in yields of broccoli, potatoes
1.21-160	Saline; beets tolerant
1.61-3.20	Strongly saline
Greater than 3.2	Very strongly saline
*Adapted fi	rom the Agriculture Analytical Services Laboratory, The Pennsylvania State University;
based on a	1:2 soil:water test.

- Leaching out salts
 - Movable tunnels to uncover production areas
 - Removal of plastic cover, in response to soil test
 report at least 12" of rain needed to leach
 - Use of irrigation to leach salts
 - As a guideline, to leach salts away from the top 12" of soil:
 - 6" of water will leach away 50% of salts
 - 12" of water will leach away 80% of salts
 - 24" of water will leach away 90% of salts

Summary

- Develop a water and soil management plan
 - Test water source annually (or more)
 - Soil test annually, SME test at least annually (more often if indicated)
 - Apply compost, nutrients, and amendments as needed
 - Foliar testing is useful to monitor a fertility program and to diagnose issues
 - Use rotations and cover crops as possible
 - Monitor soil soluble salts levels
 - Keep records!!!!!

Any Questions?

- Patrick Byers, Horticulture Field Specialist
- 417-859-2044
- <u>ByersPL@missouri.edu</u>
- <u>http://extension.missouri.ed</u>
 <u>u/Website/DisplayPage.aspx?</u>
 <u>PID=2836&County=greene</u>

