



# Why Study Insects?

- · Insects are the most numerous animal
- · They have tremendous impact on people's lives
- · Better understanding of the environment
- · Preservation of beneficial insects
- · Reduced economic losses due to insect damage







#### **BENEFICIAL ASPECTS OF INSECTS**

- Natural Recycling of Nutrients
- Dung Beetles
- Flies Decay of Dead Animals
- Termites -Decay of Dead Wood



WEXTENSIC

#### **BENEFICIAL ASPECTS OF INSECTS**

- Insects in Food Web of Wildlife
- Water Quality
- Research
- Aesthetic
- Butterfly gardening



# **Beneficial Aspects Of Insects**



- Biological Control
  - Phytophagous Insects
  - Entomophagous Insects

■ Extension

# **Injurious Aspects Of Insects**

- Horticultural Pests
  - feeding injury
  - oviposition injury
  - disease



Extension

# **Insect Biology**

Classification

kingdom phylum Arthropoda Insecta Insecta order Hymenoptera family Apidae genus Apis species mellifera



#### **INSECT BIOLOGY**

Mouthparts

UNIVERSITY OF MISSOURI
EXtension

## **Chewing Mouthparts**

- Bite or rasp off and swallow solid food Symptoms include holes, missing leaves, windowpanes, scraped areas
- Insects with chewing mouthparts:
  - Beetles
  - Caterpillars
  - Grasshoppers
  - Bees and Wasps
  - Flies



UNIVERSITY OF MISSOU

# **Sucking Mouthparts**

- Feed on plant sap by piercing plant tissue Symptoms include spotting, curling, wilting, tissue death
- Insects with sucking mouthparts:
  - Aphids
  - Scales
  - True Bugs
  - Leafhoppers
  - ThripsMites



#### **INSECT BIOLOGY**

Metamorphosis

a succession of changes in body form in the life history of an insect

■ Extension

# Complete Metamorphosis (85% species)

Egg - Larva - Pupa - Adult

Coleoptera (Beetles)
Hymenoptera (Bees and Wasps)
Lepidoptera (Butterflies and Moths)
Diptera (Flies)



# Incomplete Metamorphosis (15% species)

Egg - Nymph - Adult

Homoptera (Aphids and Scales) Hemiptera (True Bugs) Orthoptera (Grasshoppers, Katydids)

Extension



#### **Insect Orders**



# WHY ACCURATE INSECT IDENTIFICATION IS IMPORTANT!!

- •The vast majority of insects are not pests (less than 1% of all species)
- •Not all pest species are equally susceptible to insecticides
- •Some insects have developed resistance to some insecticides
- •The behavior of related species can differ a great deal; this affects control

Extension

# **COLEOPTERA**

# **Beetles**

"Sheath Winged"



Complete Metamorphosis
Chewing Mouthparts

Extension

# DIPTERA Flies

"Two Winged"



Complete Metamorphosis
Chewing Mouthparts

# HYMENOPTERA Bees and Wasps

- Complete Metamorphosis
- Chewing Mouthparts



Extens







#### **Other Insect Orders**

- Odonata dragonflies and damsonflies
- Orthoptera grasshopper and crickets
- Thysanoptera thrips





#### **Plant Disease**

 Malfunction resulting from a continuous irritation by environmental factors or pathogenic organisms that cause negative changes in the plant







Extension

#### **Significance of Plant Health**

- World's dependence on plants and plant products for human existence
  - Source of all food, directly or indirectly



- Home Landscape
  - Edible fruits and vegetables
  - Value: functional, aesthetic (\$)



Extension

# **Plant Disease Triangle**

 A disease will only occur when 3 conditions are met:

Susceptible Pathogen Host

Favorable Environment

# **Disease Cycle**

- Describes the chain of events involved in disease development by a biotic pathogen.
- Disease Cycle includes the following events:
  - Production of infectious inoculum
  - Spread of the inoculum
  - Penetration of the inoculum
  - Infection within the host plant
  - Colonization additional cycles to produce new inoculum. Stage when symptoms first show.
  - Survival/overwintering between growing seasons

■ Extension

### **Significant Plant Diseases**

- Late Blight of Potato-Irish Potato Famine (1844)
- Ergotism "St. Anthony's Fire": 600 B.C. early 1900's
- Chestnut Blight (1904-1940)
- Dutch Elm Disease (1930-present)
- Sudden Oak Death and Ramorum Blight (1995-present)



4 billion dollars a year in overall crop



Extension

Extension

# **Two Causes Of Plant Damage**

• Abiotic Disorders or Stresses



· Infectious Diseases (Biotic)



















































#### **Viruses as Causes of Plant Disease**

- Can only be seen using an electron microscope
- Extremely simple nucleic acid with a protein coat
- Cannot reproduce on their own. Virus "hijacks" the host plant's reproductive machinery. Multiplies only in host plant
- Account for 5% of plant diseases



Extension

#### **Viruses**

- Are Spread By:
  - Infected Plants
  - Grafting
  - Insect Vectors
  - Nematodes
  - Humans
  - Seeds
- Viral Diseases are Systemic:
   Once Infected There is no Cure

Extension

#### **Common Virus Diseases**

■ Extension

# **Phytoplasmas as Causes of Plant Disease**

- Somewhat like bacteria but much smaller and have no cell wall
- Reproduce by cell division (binary fission)
- Phloem-limited

Ash Yellows phytoplasma as seen with an electron microscope





■Extension

#### **Phytoplasmas**

- Transmitted by Phloem-Feeding Insects
- Ex. Leafhoppers
- Obligate Parasites Must Live in Host or Vector



Leafhopper Vector of Phytoplasmas

UNIVERSITY OF MISSOURI
EXtension

#### **Common Phytoplasma Diseases**

Aster yellows

# Parasitic Seed Plants as Causes of Plant Disease

- Plants that live on and obtain nutrients from other plants
- Reproduce through seeds
- Spread by exploding fruit, birds, infested crop seed lots







 A lichen is composed of two organisms, a fungus and an algae, living symbiotically



### **Nematodes as Causes of Plant Disease**

- Parasitic, unsegmented worms
- Usually seen only with a light microscope
- Only 10% are plant parasites
- Stylet-specialized mouthpart
- Reproduce by eggs
- Most infect roots
- Spread by infected soil, plants and plant debris





#### What is IPM?

- Integrated a whole in which the parts work together
- Pest a problem
- Management control, direct, influence
- EPA definition of IPM "Integrated Pest Management (IPM) is an effective and environmentally sensitive approach to pest management that relies on a combination of common-sense practices."

#### **Steps of Effective IPM**

- · Establish a policy
  - Do you follow organic practices? Organic guidelines will help define IPM in your garden
  - Learn what IPM is and how it differs from non-IPM, calendar-based pesticide applications.
  - Educate yourself about the benefits that IPM can deliver
  - Pesticides discuss how your pesticides will be selected, applied and stored.

Extension

#### **Steps of Effective IPM**

- · Establish a policy.
- Identify pests correctly.
  - The development of a management strategy depends on accurate diagnosis of a problem
  - What is perceived as a problem may not be a problem at all
  - It may not be a detrimental pest after all, and no control measures will be necessary
  - Sometimes, there is nothing to be done
  - Saves time, energy, and money

Extension

## **Identify Pests Correctly**

#### **Abiotic Stresses**

- Environmental
- Nutritional
- Cultural
- Chemical

#### **Biotic Stresses**

- · Fungal diseases
- · Bacterial diseases
- · Viral and other diseases
- Insects
- Mites and other arthropods
- Nematodes
- Birds, mammals
- Weeds

Extension

#### **Problem Diagnosis**

- · Need help with diagnosis?
  - Extension resources
  - Other governmental resources Department of Agriculture, University plant/insect/nematode/weed diagnostic services
  - Develop a reference library, use internet

Extension

# **Steps of Effective IPM**

- Establish a policy.
- · Identify pests correctly.
- Monitor pest populations on a regular basis.
  - Watch your plants for signs of problems
  - Is the pest expected each year?
  - Keep an open mind
  - Phenology is important
  - What is the real cause of the symptoms?



#### **Steps of Effective IPM**

- Establish a policy.
- Identify pests correctly.
- Monitor pest populations on a regular basis.
- · Determine action threshold.
  - Pest population
  - Damage threshold
  - Significant injury level



# **Steps of Effective IPM** · Establish a policy. Identify pests correctly. Monitor pest populations on a regular basis. Determine action threshold. Choose the proper management tactic or combination of tactics. Extension

## **IPM Strategies**

- · Biological control
- · Mechanical control
- · Cultural control
- · Genetic control
- · Chemical control

Extension

# **Biological Controls**

- Take advantage of the environment, weather can be your friend or foe
- Using beneficial organisms, such as natural pest predators, parasites and diseases to suppress pest organisms.
  - Bacillus thuringiensis caterpillars
  - Biological nematicides plant parasitic nematodes
- Natural enemies, such as lady beetles, lacewings and beneficial wasps
- Natural control products: pyrethrins, neem, spinosad
- Biological controls and reality
- Control is slow, not complete



■ Extension



### **Mechanical Control**

- Using barriers or traps and altering pest habitat to diminish pest pressure
- Insects
- Hand removal, trapping
- Diseases
- Prune out diseased parts
- Removal of overwintering sites or stages
- Cultivate or hand pull weeds
- Other problems trap mice/voles
- Significant cost to these production inputs money, time



# **Insect Pheromone Trapping**





#### **Cultural Control**

- · Crop rotation
- · Cover cropping
- · Correctly prepare sites before planting
- Use proper planting techniques
- Provide optimum conditions for growth watering, fertilizing, mulching, weed control
- Proper pruning and training
- Sanitation

Extension

#### **Genetic Control**

- · Use adapted cultivars
- · Use pest resistant cultivars
- · Use rootstocks that are pest resistant
- · Genetically modified cultivars?



#### **Chemical Control**

- Using pesticides to prevent or suppress a pest outbreak.
  - The selection of chemicals used in IPM programs considers that the pesticide is as specific to the pest as possible
  - Used at the lowest effective rate
  - Short-lived in the environment
  - Least toxic to beneficial organisms and the environment
  - Alternated with other chemical modes of action to help prevent resistance
  - General applications are often followed with spot applications as needed

■ Extension

#### **Chemical Control**

- The use of chemical pesticides is sometimes needed even when other, nonchemical practices are followed.
- Must know the proper use of chemicals labels, rates, timing, safe applications
- Pesticides are just one choice
  - Do not use products indiscriminately
  - Pesticides are a choice only after deliberation
  - Often an economic choice save money

**■**Extension

#### Steps of Effective IPM

- Establish a policy.
- Identify pests correctly.
- Monitor pest populations on a regular basis.
- Determine action threshold.
- Choose the proper management tactic or combination of tactics.
- Evaluate the effectiveness of the management plan.
  - What worked well?
  - Which aspects need improvement?
  - Which should be eliminated?
  - What are the benefits of the program in environmental or social value?

## **Steps of Effective IPM**

- · Establish a policy.
- · Identify pests correctly.
- Monitor pest populations on a regular basis.
- · Determine action threshold.
- Choose the proper management tactic or combination of tactics.
- Evaluate the effectiveness of the management plan.

Extension

#### What is Necessary to Practice IPM?

- · Gain an education
  - Must know your plants
  - Must be able to identify problems
  - Must know all control strategies
- · You must stay current...
  - Attend seminars
  - Talk among yourselves
  - Attend conferences
  - Keep a library of reference books
  - Watch out for the internet trash is there
  - Watch out for "feelings" vs "facts"
  - Remember you are a student forever

■ Extension

# **IPM Strategies and Tomato**

- · Establish a policy.
- · Identify pests correctly.
- Monitor pest populations on a regular basis.
- Determine action threshold.
- Choose the proper management tactic or combination of tactics.
- Evaluate the effectiveness of the management plan.

































## **IPM Strategies and Tomato**

- Biological control Mechanical control
- Cultural control
- Rotation of planting sites
- Establishment of plantings
  - Clean seed, media, containers
    Clean transplants
- Trellising and pruning
- Use of drip irrigation
- Use of plastic or organic mulches
- Use of protected structures (tunnels)
- Sanitation removal of plant debris (early blight), incorporation into the soil (southern blight)
- Disinfection of cages and stakes

Extension

# **IPM Strategies and Tomato**

- Biological control
- Mechanical control
- Cultural control
- Genetic control
  - Disease resistant cultivars
    - V: verticillium wilt
    - A, AL, AB: alternaria early blight
    - F + 1-3: races of fusarium wilt
    - N or RN: root knot nematode
    - BW: bacterial wilt
    - EB: early blight
  - Disease resistant rootstocks



# **IPM Strategies and Tomato**

- 'Juliet' tomato
  - F1 hybrid
  - Vigorous growth
  - Productive
  - Paste-type tomato
  - Good crack resistance
  - Disease Resistance Codes: AB, LB



UNIVERSITY OF MISSOURI

■ Extension

# **IPM Strategies and Tomato**

- Biological control
- Mechanical control
- Cultural control
- Genetic control
- Chemical control
  - Use the Midwest Vegetable Production Guide
  - Follow labels
  - Watch reentry times
  - Watch postharvest interval



#### Steps of Effective IPM

- Establish a policy.
- Identify pests correctly.
- Monitor pest populations on a regular basis.
- · Determine action threshold.
- Choose the proper management tactic or combination of tactics.
- Evaluate the effectiveness of the management plan.

Extension

#### Resources

- Cornell University Organic Guides for Vegetables http://nvsipm.cornell.edu/organic\_guide/veg\_org\_guide.asp
- Midwest Vegetable Production Guide https://btny.purdue.edu/Pubs/ID/ID-50
- Organic Vegetable Production (Purdue University) https://www.extension.purdue.edu/extmedia/id/id 316.pdf
- Organic Vegetable Production (Penn State U) http://extension.psu.edu/business/agalternatives/horticulture/horticultural-production-options/organic-
- Organic Materials Review Institute (OMRI) www.omri.org/omri-lists

