Hay Storage & Feeding Management

by

Bob Schultheis
Natural Resource Engineering Specialist

UNIVERSITY OF MISSOURI Extension
Questions to Consider

- Are you cutting hay for quality or quantity?
- Do you know what your bales weigh?
- Are you forage testing to confirm protein, energy and fiber levels?
- Are you tracking hay consumption or hay disappearance?
- What kind of hay feeders are you using?

The goal is to get the most high-quality forage into the animal.
Typical Forage Harvesting Losses

- Field curing: -26%
- Harvesting: -14%
- Storage: -35%
- Feeding: -30%

30% Left
Optimum Forage Harvesting Losses

Field curing -12%
Harvesting -8%
Storage -5%
Feeding -8%

70% Left
Important Factors for Quality Hay

- Forage species
- Cutting - stage of maturity at harvest
- Baling - moisture content at baling
- Handling
- Storage conditions
- Feeding methods
Forage Moisture Affects Dry Matter Harvest & Storage Losses

Source: Hoglund (1984)
Shape Dictates Moisture Content at Baling

Small Square Bales

60 lbs. ÷ 21.3 sq.ft. = 2.8 lbs./sq.ft.

Large Round Bales

1200 lbs. ÷ 142.5 sq.ft. = 8.4 lbs./sq.ft.
Maximum Hay Moisture Content (%) at Baling

Percent Moisture Content

Small Square 22% 18% 16%
Large Round
Large Square

Reference: MU Guide G3151 Using a Microwave Oven to Determine Moisture in Forages
Round Bale Silage - Baling

- Bale at 50-60% moisture content
Forage Moisture Testing

Heater/fan dryer (Koster® unit)
$365

Electrical conductance moisture meter
$450

Microwave
$50 - $100

Reference: Determining Forage Moisture Concentration
http://pubs.ext.vt.edu/442/442-106/442-106.html

Prices as of January 2014
What Do the Round Bales Weigh?

Density = 9.2 lbs./cu. ft. Moisture content = 18%

<table>
<thead>
<tr>
<th>Length (feet)</th>
<th>Diameter (feet)</th>
<th>Weight (lbs.)</th>
<th>Surface Area (sq.ft.)</th>
<th>Volume (cu.ft.)</th>
<th>Weight per Surface Area (lbs./sq.ft.)</th>
<th>Dry matter per bale (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>462</td>
<td>75.4</td>
<td>50.3</td>
<td>6.1</td>
<td>379</td>
</tr>
<tr>
<td>4.0</td>
<td>5.0</td>
<td>723</td>
<td>102.1</td>
<td>78.5</td>
<td>7.1</td>
<td>593</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>903</td>
<td>117.8</td>
<td>98.2</td>
<td>7.7</td>
<td>741</td>
</tr>
<tr>
<td>5.0</td>
<td>5.5</td>
<td>1,093</td>
<td>133.9</td>
<td>118.8</td>
<td>8.2</td>
<td>896</td>
</tr>
<tr>
<td>5.0</td>
<td>6.0</td>
<td>1,301</td>
<td>150.8</td>
<td>141.4</td>
<td>8.6</td>
<td>1,067</td>
</tr>
<tr>
<td>5.5</td>
<td>5.5</td>
<td>1,202</td>
<td>142.5</td>
<td>130.7</td>
<td>8.4</td>
<td>986</td>
</tr>
<tr>
<td>6.0</td>
<td>6.0</td>
<td>1,561</td>
<td>169.6</td>
<td>169.6</td>
<td>9.2</td>
<td>1,280</td>
</tr>
</tbody>
</table>
What Do the Square Bales Weigh?

Small Square Bales
Density = 10.3 lbs./cu. ft. Moisture content = 22%

<table>
<thead>
<tr>
<th>Height (in.)</th>
<th>Width (in.)</th>
<th>Length (in.)</th>
<th>Weight (lbs.)</th>
<th>Surface Area (sq.ft.)</th>
<th>Volume (cu.ft.)</th>
<th>Weight per Surface Area (lbs./sq.ft.)</th>
<th>Dry matter per bale (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.0</td>
<td>18.0</td>
<td>40.0</td>
<td>60</td>
<td>21.3</td>
<td>5.83</td>
<td>2.8</td>
<td>47</td>
</tr>
<tr>
<td>16.0</td>
<td>18.0</td>
<td>40.0</td>
<td>69</td>
<td>22.9</td>
<td>6.67</td>
<td>3.0</td>
<td>54</td>
</tr>
</tbody>
</table>

Large Square Bales
Density = 10.3 lbs./cu. ft. Moisture content = 16%

<table>
<thead>
<tr>
<th>Height (in.)</th>
<th>Width (in.)</th>
<th>Length (in.)</th>
<th>Weight (lbs.)</th>
<th>Area (sq.ft.)</th>
<th>Volume (cu.ft.)</th>
<th>Weight per Surface Area (lbs./sq.ft.)</th>
<th>Dry matter per bale (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.0</td>
<td>36.0</td>
<td>96.0</td>
<td>742</td>
<td>114.0</td>
<td>72.00</td>
<td>6.5</td>
<td>623</td>
</tr>
<tr>
<td>36.0</td>
<td>48.0</td>
<td>96.0</td>
<td>989</td>
<td>136.0</td>
<td>96.00</td>
<td>7.3</td>
<td>831</td>
</tr>
<tr>
<td>48.0</td>
<td>48.0</td>
<td>96.0</td>
<td>1,318</td>
<td>160.0</td>
<td>128.00</td>
<td>8.2</td>
<td>1,107</td>
</tr>
</tbody>
</table>
At a given temperature and relative humidity, there is a corresponding moisture content below which the hay will no longer release moisture.
Effect of Moisture at Baling Time on Heat Retention in Big Bales

Source: University of Missouri, 1979
Critical Bale Temperatures

<table>
<thead>
<tr>
<th>Bale Temperature</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td><120 °F</td>
<td>Safe</td>
</tr>
<tr>
<td>120 °F – 160 °F</td>
<td>Caution: Monitor for temperature increase</td>
</tr>
<tr>
<td>>160 °F</td>
<td>Fire is likely!! Call fire department. Remove susceptible bales to safe area away from other hay</td>
</tr>
</tbody>
</table>

Reference: MU Guide G4575 Making and Storing Quality Hay
Heating Losses

- Fire
- Mold damage
- Maillard reaction (browning)
 - Formation of sugar/protein polymers
 - Lowers digestibility of available protein and sugars
 - Test for available protein as well as total protein
Round Bale Storage Alternatives

- **Outside**
 - In field
 - In rows
 - Individual covers
 - Wrapped
 - Pyramid stack

- **Inside**
 - Pyramid stack
 - On-end stack
Outside-Stored Round Bales

- Less dense → more squat → more damage
- Under trees → less drying → more damage
- Flat ground → less drainage → more damage
- Rounded sides touching → more damage
- Smaller diameter → more damage
Bale Density Affects Weathering

Precipitation = 3 inches
Storage Time = 100 days

Moisture penetration = 16.3"
74% of original height
Very difficult to handle

Moisture penetration = 3.5"
91% of original height
Easy to handle
Estimating Round Bale Spoilage Depth

Actual spoilage pattern

Equivalent spoilage

6"

20
Amount of Dry Matter in Outer Layers of Round Bales

<table>
<thead>
<tr>
<th>Bale Dia. (feet)</th>
<th>2"</th>
<th>4"</th>
<th>6"</th>
<th>8"</th>
<th>10"</th>
<th>12"</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>21</td>
<td>40</td>
<td>56</td>
<td>69</td>
<td>80</td>
<td>89</td>
</tr>
<tr>
<td>3.5</td>
<td>18</td>
<td>35</td>
<td>49</td>
<td>62</td>
<td>73</td>
<td>82</td>
</tr>
<tr>
<td>4.0</td>
<td>16</td>
<td>31</td>
<td>44</td>
<td>56</td>
<td>66</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>14</td>
<td>27</td>
<td>40</td>
<td>51</td>
<td>60</td>
<td>69</td>
</tr>
<tr>
<td>5.0</td>
<td>13</td>
<td>25</td>
<td>36</td>
<td>46</td>
<td>56</td>
<td>64</td>
</tr>
<tr>
<td>5.5</td>
<td>12</td>
<td>23</td>
<td>33</td>
<td>43</td>
<td>51</td>
<td>60</td>
</tr>
<tr>
<td>6.0</td>
<td>11</td>
<td>21</td>
<td>31</td>
<td>40</td>
<td>48</td>
<td>56</td>
</tr>
</tbody>
</table>
Which Has More Spoilage?

Two 4’ x 4’ bales @ 460 lbs. each

141 lbs. + 141 lbs. = 273 lbs.
31% + 31% = 23%

One 5.5’ x 5.5’ bale @ 1200 lbs. each

273 lbs. = 23%
Outside Uncovered Storage

- Run rows north-south
- Use sloped site
- Space rows 3+ feet apart
- Butt bales end-to-end

3 feet
Individual Bale Covers or Sleeves

- Trap excess moisture under plastic
- Lost bonnet spikes can puncture tires
- Wind or animal damage likely
- Better than no cover at all
Reduce Ground Contact

Pallets, poles or railroad ties

Net wrap
Moisture Distribution of Twine Wrapped Alfalfa/Grass Round Bales Stored on the Ground vs. on Pallets

Images courtesy of Dr. Kevin Shinners, U of Wisconsin
Is Net-Wrap Worth the Cost?

- Costs $.30 -$.50 more per bale than plastic twine
- Installs quicker than twine; saves fuel & labor
 - 10 seconds vs. 60 seconds
- Sheds water 2X better than twine (3” twine spacing)
- Helps hold bale shape better
 - Less wind damage & bottom rotting
- Can save lost hay if handled often
- May save time at feeding
 - Depends on mud & ice cover
 - Less so with elastic edge
Moisture Distribution of Twine Wrapped vs. Net Wrapped Alfalfa/Grass Round Bales Stored on the Ground

Images courtesy of Dr. Kevin Shinners, U of Wisconsin
Economics of Net-Wrap vs. Twine

- **Net-Wrap**: $210 per 64” x 7,000 ft. roll, 2¼ wraps/bale
- **Sisal Twine**: $40 per 9,000 ft. bale, 3” spacing
- **Plastic Twine**: $37 per 20,000 ft. bale, 3” spacing

![Bar chart showing the cost per bale for different sizes of bales using Net-Wrap, Sisal Twine, and Plastic Twine.]

Prices as of 1/2014
John Deere B-Wrap™
An Alternative to Indoor Storage

- Costs about $5 more per bale than net-wrap
- Sheds rain and snow; protects from ground moisture
- Microscopic pores allow bale moisture to escape
- Installs like net-wrap using a special baler kit
- 1 layer net-wrap + 1 layer B-wrap + 2 layers net-wrap
- Works with baled hay & crop residues; best on high-quality hay
- May achieve similar losses as hay stored in barn

Photo credit: www.deere.com
Pyramid Stacking + Rock Base

End ropes tie to post under stack. Rebar “Ts” in grommets hold sides.

After 6 months outside storage
Large Round Bale Outside Storage

- Cover Hay with Reinforced Plastic or Canvas
- Ground Slopes Away from Stack
- 4"-8" of 2"-4" Crushed Rock
Ownership Cost Summary for Crushed Rock & Reinforced Plastic Tarpaulin

Assumed:

a. 28' W x 120' L x 8" thick crushed rock pad
b. Pad holds 200 bales weighing 1200 lbs. each, 66" L x 66" D (120 tons)
c. Maintenance on rock and tarp is minimal for 3 year life.

Construction Cost:

a. 2"-4" dia. rock (50% <4" dia.), 140 tons @ $19.00/ton = $2,660

 8" x 28' x 120' = 2240 cu.ft. = 83 cu.yd.

 2240 cu.ft. x 125 lb./cu.ft. = 280,000 lb. = 140 tons

 $13.00/ton FOB plant, plus $6.00/ton delivery within 15 mi.

b. Tarpaulin, 12-mil, reinforced polyethylene plastic = $1,430

 60' x 120' x $0.20/sq.ft.

Total Cost = $4,090

Prices as of 12/2010 --Rock cost ranges from $8-$14 per ton, depending on quarry
Building Planning

- What type?
 - Wood truss
 - Steel truss
 - Metal hoop
Location and Layout – Site Selection
Location and Layout – Legalities

- Zoning
- Building permits
- Codes and inspections
Building Design

- **Dead loads**
 - Weight of building materials
 - Assume 5 lbs./sq. ft. for open trusses
 - Add more if ceiling or if trusses will support hanging items

- **Live loads (for the Ozarks)**
 - Snow (15 lbs./sq. ft. uniform loading)
 - Add 5 lbs./sq. ft. for uneven loading (ice)
 - Wind (90 MPH minimum)

Total load = 25 lbs./sq. ft. minimum
Buildings – How They Fail
Live Load – Wind Loading Pressures

- Design for 90 MPH winds
- Not tornado-proof
Maximum Spacing (ft.) of Posts on Closed Gable Roof

<table>
<thead>
<tr>
<th>No. 2 Southern Pine</th>
<th>Eave Height (ft.) with 90 MPH Wind Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Post Size 10’</td>
</tr>
<tr>
<td>6x6</td>
<td>5.7</td>
</tr>
<tr>
<td>6x8</td>
<td>10.5</td>
</tr>
<tr>
<td>6x10</td>
<td>16.9</td>
</tr>
<tr>
<td>8x8</td>
<td>14.4</td>
</tr>
</tbody>
</table>

NR = Not Recommended

- Use ACQ-approved fasteners
- Frost depth = 30 in.

Reference: NRAES-1 Post-Frame Building Handbook
Post Embedment Depth (in.) for Buildings up to 60 ft. wide

<table>
<thead>
<tr>
<th>Sandy Silt Soil (1500 psf vert.)</th>
<th>Eave Height (ft.) with 90 MPH Wind Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Spacing (ft.)</td>
<td>10’</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>66f</td>
</tr>
<tr>
<td>10</td>
<td>66f</td>
</tr>
</tbody>
</table>

- f = full concrete collar
- NR = Not Recommended

Reference: NRAES-1 Post-Frame Building Handbook
Beam & Footing Sizing

- **Beam load:**
 \[(40' \div 2) \times 25 \text{ psf} = 500 \text{ lb./ft.}\]
 \[= 6 \times 10 \text{ beam}\]

- **Footing load:**
 \[10' \times 500 \text{ lb.ft.} = 5000 \text{ psf}\]
 \[= 20'' \text{ dia. footing}\]

- **40’ wide barn**
- **10’ post spacing**
- **25 psf roof load**
Pressure-Treated Lumber

- CCA → Chromated Copper Arsenate
- ACQ-C → Alkaline Copper Quat Type C
- ACQ-D → Alkaline Copper Quat Type D Carbonate
- CBA-A and CA-B → Copper Azole Types A and B
- SBX/DOT → Sodium Borate
- Zinc Borate
- MCQ → Micronized Copper Quat

Use hot-dip galvanized or Types 304 or 316 stainless steel fasteners

One ½" bolt is equal to four 30d pole barn nails.
Wind Bracing & Ceiling Support

- Purlin
- King post
- Knee brace
Sizing Hay Barns

Small Square Bales:
250 cu.ft. per ton

Large Round Bales:
310 cu.ft. per ton
Inside Storage
Stacked Square Bales

Small Square Bales
14" x 18" x 40", 60 lbs., 22% M.C.

Flat (twines up):
6960 bales
163 tons dry matter

On Edge:
7026 bales
164 tons dry matter

40' W x 60' L x 16' H Hay Barn
Inside Storage - Pyramid

Large Round Bales
5' L x 5' D, 900 lbs., 18% M.C.

40' W x 60' L x 16' H Hay Barn

4 rows, 307 bales
113 tons dry matter
18 ft. high

3 rows, 252 bales
93 tons dry matter
13.6 ft. high
Inside Storage - On-End

Large Round Bales
5' L x 5' D, 900 lbs., 18% M.C.

3 rows on-end, 288 bales
106 tons dry matter
15 ft. high

40' W x 60' L x 16' H Hay Barn
Ownership Cost Summary for Clear-Span Wood or Steel-Truss Barn

Assumed:

a. 40' W x 60' L x 16' H barn rated at 25 psf total roof load.

b. Barn holds 200 bales weighing 1200 lbs. each, 66" L x 66" D (120 tons)

c. $7.50/sq.ft. cost = clear-span, colored metal, dirt floor, 15-20 year life.

Construction cost at $7.50 per sq.ft., including labor = $18,000

Annual Barn Cost (depreciated over 10-year life of 9% loan):

a. Depreciation ($18,000 ÷ 10 years) = $ 1,800

b. Interest (2/3 of annual interest rate on loan = 6%) = 1,080

c. Repairs (0.7% of construction cost) = 126

d. Taxes (1% of construction cost) = 180

e. Insurance (0.3% of construction cost) = 54

Total Annual Cost = $ 3,240
Hoop Structures for Hay Storage

Specifications for this structure:

- 30 ft. x 102 ft.
 (widths range from 24-70 ft., lengths in 10-ft. increments)
- UV-treated polyethylene cover
- Clearance: 11’4” + wall height
 (11’4” + 6’ = 17’4”)
- Holds 270 bales weighing
 1200 lbs. each, 66” L x 66” D
 (160 tons) in 6-5-4 pyramid
- Estimated 10-year life
Hoop Structures for Hay Storage

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package (hoops, cover)</td>
<td>$10,080</td>
</tr>
<tr>
<td>Posts (42 ea.)</td>
<td>1,260</td>
</tr>
<tr>
<td>Concrete for posts & lumber for side walls</td>
<td>1,260</td>
</tr>
<tr>
<td>Approx. materials cost</td>
<td>$12,600</td>
</tr>
<tr>
<td>Approx. labor cost</td>
<td>$ 5,700</td>
</tr>
<tr>
<td>Approx. Total Cost</td>
<td>$18,300</td>
</tr>
</tbody>
</table>

= $6.00 per sq.ft.

Price estimate as of 12/2010
Round Bale Storage Economics

- **Outside**: 28'W x 120'L x 8"H rock pad, $4,090 total cost ($1,363/year)
- **Inside**: 40'W x 60'L x 16'H barn, $18,000 construction cost ($3,240/year for 10 years)

```
<table>
<thead>
<tr>
<th>Bale Size (L' x D' x Weight)</th>
<th>Annual Cost per Bale ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5 x 5.5 x 1200</td>
<td>Inside-Stored, On-End</td>
</tr>
<tr>
<td>5 x 5.5 x 1090</td>
<td>Inside-Stored Pyramid</td>
</tr>
<tr>
<td>5 x 5 x 900</td>
<td>Outside- Stored Pyramid</td>
</tr>
<tr>
<td>4 x 5 x 720</td>
<td></td>
</tr>
<tr>
<td>4 x 4 x 460</td>
<td></td>
</tr>
</tbody>
</table>
```

53
Affordability of Storage
($$ value of hay lost)

<table>
<thead>
<tr>
<th>Storage loss (%)</th>
<th>Hay price (per ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$40</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>35</td>
<td>14</td>
</tr>
<tr>
<td>40</td>
<td>16</td>
</tr>
</tbody>
</table>

Note: Does not include losses associated with shrinkage or reduced quality.

Reference: Oklahoma State University factsheet BAE-1716 Round Bale Hay Storage
Hay Feeding Losses Can Be Significant

Up to 40% loss possible with this common method
Hay Wasted by Cows When Fed With and Without Racks

(Bell, S., and F.A. Martz., University of Missouri, 1973)

<table>
<thead>
<tr>
<th>Type of Hay</th>
<th>Percent Wasted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square bale in rack</td>
<td>7%</td>
</tr>
<tr>
<td>Large round bale in rack</td>
<td>9%</td>
</tr>
<tr>
<td>Large round bale without rack</td>
<td>45%</td>
</tr>
</tbody>
</table>
General Rules on Hay Feeding

Hay quality should be matched to animal needs
• Sort cattle into groups based upon stage of production
• Barns with side access work best for this
• Feed lowest-quality hay to dry or non-lactating cows
• Feed highest-quality hay to lactating heifers or cows
• Feed “pounds of hay,” not “number of bales”

Feed outside-stored hay before inside-stored hay
• Animals fed high-quality hay early in the season will often refuse poor-quality hay when it is offered later
General Rules on Hay Feeding

- Feed coarse, less-dense, or high-quality outside hay before fine-stemmed, more-dense outside hay.
- Feed hay in small amounts or in a feeder to minimize waste.
- Feed hay in well-drained areas or move hay areas around.
- Time feeding to force clean-up.
 - Remember last part of hay is lowest quality – watch body condition!
Herbicide Precautions of Feeding Hay

Was hay treated with herbicide products containing aminopyralid?

• GrazonNext® HL, Chaparral™, Milestone®
• Aminopyralid readily passes through livestock, with no effect on the animal
• Land planted to sensitive broadleaf crops can be impacted by herbicide residue in urine and manure
 ▪ Alfalfa, soybeans, sunflowers, cotton, tobacco, peanuts, sugarbeets
 ▪ Tomatoes, beans, lettuce, cucurbits, potatoes, strawberries, grapes, flowers

Graphic credit: www.dowagro.com/range/eSteward/south_index.htm
Herbicide Precautions of Feeding Hay

◆ If feeding hay you raised:
 • Stop feeding treated hay to cattle 3 days before moving them to sensitive fields
 • Manure can be spread on pasture grasses, grass grown for seed, wheat or corn

◆ If purchasing hay:
 • Ask if the hay you are buying has been treated with a herbicide
 • Do not use treated hay for compost or gardening

◆ As a hay producer:
 • Will the hay be used on-farm or will it be sold?
 • If sold, communicate precautions to the purchaser
Estimated losses (% of hay offered) from different hay-feeding methods

<table>
<thead>
<tr>
<th>Bale Type</th>
<th>With Rack</th>
<th></th>
<th>Without Rack</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-Day Supply</td>
<td>7-Day Supply</td>
<td>1-Day Supply</td>
</tr>
<tr>
<td>Small square</td>
<td>3.9</td>
<td>4.9</td>
<td>6.7*</td>
</tr>
<tr>
<td>Large round or square</td>
<td>4.9</td>
<td>5.4</td>
<td>12.3*</td>
</tr>
<tr>
<td>Formed haystacks</td>
<td>8.8</td>
<td>15.0</td>
<td>22.6</td>
</tr>
<tr>
<td>Small round bales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(fed in place on pasture)</td>
<td>10.0</td>
<td>30.0</td>
<td></td>
</tr>
</tbody>
</table>

* Bales spread or unrolled across pasture

Reference: MU Guide G4570 Reducing Losses When Feeding Hay to Beef Cattle
http://extension.missouri.edu/explorepdf/agguides/crops/g04570.pdf
Advantages of Unrolling Hay

• Allows “boss” cows and timid cows to eat together
• Less hoof damage to feeding area because it is larger
• Controls the amount of hay allotted by portioning bales
• Can help overseed pastures with legumes
• Distributes fertilizer nutrients back on field
Bale Processors - Pros & Cons

- **Myth**: grinding forages will increase forage quality
- Quality may decrease, especially if hay is ground on a windy day (leaf loss)
- Decreased particle size = decreased rumen retention time = increased forage intake
- Allows a way to increase consumption of low to medium quality forages
- Allows a way to combine forages of differing quality for best use in a cow feeding diet
- Allows a way to manage problem forages, i.e., high nitrates
- Increased ownership cost of $20K-$25K equipment

Reference: www.extension.org/pages/17216/forage-feeding-losses-can-add-up
Bale Processors

<table>
<thead>
<tr>
<th>Feeding Method</th>
<th>100-cow herd, feeding cost per cow</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTO-powered bale processor</td>
<td>$128.10</td>
</tr>
<tr>
<td>Unrolling bales on ground</td>
<td>$113.90</td>
</tr>
<tr>
<td>Tapered-cone round bale feeder</td>
<td>$101.80</td>
</tr>
</tbody>
</table>

Rolling bales out on the ground or shredding into windrows with a bale processor increased hay consumption and winter feeding cost without enhancing cow performance.

Reference: North Dakota State University, 2005 -- www.ag.ndsu.edu/archive/dickinso/research/2004/beef04r.htm
Low-Labor Hay Ring Management

- Space bales 20 ft. apart in pasture or paddock corner
- Enclose bales with movable electric fence
- Feed bales in hay rings
- Use multiple rings to reduce “boss” cow problems
- Move fence & rings as needed

Reference: MU Guide G4570 Reducing Losses When Feeding Hay to Beef Cattle
http://extension.missouri.edu/p/G4570
Feeder Design Affects Wastage

Cattle remove hay & step on it

Hay gets used as bedding
Feeder Design Affects Wastage

JAS 81:109 (Michigan State University, 2003)

- Cone feeder: 3.5% loss
- Ring feeder: 6.1% loss
- Trailer: 11.4% loss
- Cradle: 14.6% loss
Why the Big Differences?

- Slanted bars discourage cows from backing out of feeder
- Most dropped hay stays in feeder
- Boss cows less aggressive toward timid cows

Cone feeder = $1000 + shipping
vs.
Ring feeder = $120 - $350
Cone Feeder Pros & Cons

- Keeps hay off of the ground
- Saves 10-20% hay usage annually
- Saved hay stretches limited supplies
- Supports bales up to 2,500 lbs. in weight
- Top ring keeps cattle from pulling hay off of the top
- Much longer life compared to cheap hay rings
- Feeder weighs 600+ lbs. Cannot be easily moved by hand
- Higher initial cost
Can You Afford a Cone Feeder?

- Initial feeder cost = $725
- Assume 10% hay savings on $50 bale
- Assume 10-year life vs. 1-2 year life

- Saves $500 for every 100 bales fed, or $5,000 for 1000 bales fed over 10 years

When might a cheap hay ring be better?.......

…….when feeding junk hay that the cows are going to waste. It’s easier to move the ring by hand more frequently.
Example:
50 cows for 3 months
30 lbs. hay per day
$60 per 1000 lb. bale

= $1,053 hay wasted

Reference: www.noble.org/ag/tools/livestock/hay-ring
Example:
50 cows for 3 months
30 lbs. hay per day
$60 per 1000 lb. bale

= $429 hay wasted

Reference: www.noble.org/ag/tools/livestock/hay-ring
Cone Feeder Styles

Photo credit: fyi.uwex.edu

Photo credit: www.applegatelivestock.com

Photo credit: www.weldyenterprises.com

Photo credit: www.franklinwaterers.com/bale.html

Photo credit: www.titanwestinc.com/bextra.html
Cone Feeder Styles
Feeding Strategies

Keep feeding areas as dry as possible
Feed on a pad or elevated surface
Feeding Strategies

Make animals use up hay before adding more to feeder
Feeding Strategies

Cull aggressive animals
Feeding Strategies

Consider feeder durability vs. cost
Summary

- Harvest for quality or buy good hay
- Protect the hay from moisture
- Know what your bales weigh
- Test for nutrient quality before feeding
- Use some type of hay feeder if not limit-unrolling
- Select feeder that minimizes waste
 - At least solid lower panels and slanted bars
- Limit-feed in well-drained area
- Costly-to-buy feeders likely cheaper long-term
Questions?

Robert A. (Bob) Schultheis
Natural Resource Engineering Specialist
Webster County Extension Center
800 S. Marshall St.
Marshfield, MO 65706
Voice: 417-859-2044
Fax: 417-468-2086
E-mail: schultheisr@missouri.edu
Web: extension.missouri.edu/webster

Program Complaint Information
To file a program complaint you may contact any of the following:

University of Missouri
- MU Extension AA/EEO Office
 109 F. Whitten Hall, Columbia, MO 65211
- MU Human Resources Office
 130 Heinkel Bldg, Columbia, MO 65211

USDA
- Office of Civil Rights, Director
 Room 326-W, Whitten Building
 14th and Independence Ave., SW
 Washington, DC 20250-9410

"Equal opportunity is and shall be provided to all participants in Extension programs and activities, and for all employees and applicants for employment on the basis of their demonstrated ability and competence without discrimination on the basis of their race, color, religion, sex, sexual orientation, national origin, age, disability, or status as a Vietnam-era veteran. This policy shall not be interpreted in such a manner as to violate the legal rights of religious organizations or military organizations associated with the armed forces of the United States of America."

Some slides in this presentation provided by:
-- University of Arkansas Extension
-- University of Kentucky Extension