Saving Money On Your Utility Bills

Bob Schultheis
Natural Resource Engineering Specialist / CPD

UNIVERSITY OF MISSOURI Extension
Energy Consumption in the U.S.

“You’re not actually saving any money until you have recaptured the money you spent to do the energy measure.”
A house energy “audit” guides weatherization
There is No “Silver Bullet”

• No one thing will magically cut energy expenses a lot
• Many little things all add up to greatly-reduced costs
• Calculate the “life-cycle cost”
 – Cost of installation + cost of operation over lifetime
• Concentrate first on no-cost / low-cost options that offer biggest savings
Basic Rule of Heat Transfer

Heat always flows from a warmer area to a colder area

HOT → COLD
Home Heat Loss Example

- Infiltration: 37%
- Walls: 15% (R-19)
- Ceiling: 11% (R-30)
- Floor: 21% (R-13, R-1.6)
- Glass: 13% (R-3.2)
- Doors: 3%

1500 sq. ft. home with crawl space
Four Types of Heat Loss

• **Conduction** = heat transfer through solids
 – 6 inches of fiberglass = 8 feet of brick

• **Convection** = heat transfer through liquids & gases
 – 1/8” door gap = 6” round hole

• **Radiation** = heat transfer w/o solids, liquids or gases
 – Example: Warming by sunlight

• **Ventilation** = for health, moisture control
 – 30-50% R.H. indoors is ideal
home energy solutions

- No cost
- Low cost
- More costly

- Openable skylight with low-e glass and screening
- R-38 attic insulation
- Clothesline for drying
- ridge vent
- Photovoltaic-powered attic vent
- Photovoltaic panels with approved connection to power grid
- Deciduous trees on sun-facing side
- Light-colored roofing to reflect sunlight
- IC or sealed double-wall ceiling cans
- Whole-house fan
- Compact fluorescent lamps
- Ceiling fan
- Programmable thermostat
- Drapes and blinds drawn on all sun-facing windows
- Awning shading windows
- Trellis with deciduous vines
- Compact fluorescent lamps in exterior fixtures
- Wrap water heater
- Removable shade cloth
- Motion-detecting light switch
- Caulk around plugs
- Low-e or spectrally selective tint film on windows
- portable fan
- Nonreflective ground cover
- Inspect ducts, seal with mastic or approved metallic tape
- Weather-stripping around all doors
- Low-voltage landscape lights
- Set water heater at 120°
What You Can Do NOW to Save $$

The $100 solution for your home = PLUG THE HOLES

- Expandable foam
- Weatherstrip
- Outlet insulators
- Foil duct tape
- Water heater insulation blanket
- Caulking
Seal Out the “Stack Effect”
Weatherize Against Infiltration

- Wiring, pipe & duct penetrations in attic, under floor & through walls
- Caulking where dissimilar materials meet
- Weatherstripping doors, windows & sills
- Outlet insulators on exterior walls
- Vapor barriers
 - 20 GPD evaporates from crawl space into air of 1400 sq.ft. home
 - Install 4-6 mil plastic on “warm-in-winter” side
Installing Outlet Insulators

1. Before
2. Cover removed
3. Gasket to install
4. Gasket installed
5. Cover replaced & plugs added
HVAC System Air Ducts

- Caulk, tape or mastic joints = save up to 20% of ventilation heat loss
- Don’t use cloth duct tape!
- Insulate metal ducts to R-3 to R-6
HVAC System

Installation of Duct Mastic & Insulation
Control Air Leaks – weatherstrip doors

1) Weatherstripping the face of the door
2) Weatherstripping the edge of the door
Control Air Leaks – weatherstrip doors
Water Heaters

• Insulate if warm to the touch
• Set temperature to 120°F-135°F
• 3-5% savings for each 10°F reduction
• Use thermal trap on inlet/outlet
• Insulate water lines first 2 feet

Photo credit: http://www.california.com/~positivenergy/xina/graphics/blanket.gif
Insulate and turn down water heater

120-135°F for electric

Mid or Warm for gas
Stop hot water leaks and insulate pipes.

Water stain on a basement wall - locate and fix the source of the water promptly.
Insulate Against Heat Loss
R-Value

- Definition: A measure of a material’s ability to resist the flow of heat
- Higher values = less heat flow
- Buying R-Value
 - “Material” basis vs. “Installed” basis
- Compute R-Value cost per inch
R-Value of a Wall Section

- Interior Surface: 0.68
- 3/8” Gypsum Board: 0.32
- 3 1/2” Blanket Insulation: 11.00
 (vapor barrier on warm side)
- 3/8” Plywood: 0.47
- Bevel Siding: 0.81
- Exterior Surface: 0.17

Overall R: 13.45
How Much Insulation for MO?

- Attics = R-49
- Cathedral ceilings = R-38
- Walls = R-18
- Floor over crawl space = R-25
- Crawl space wall = R-19 (if conditioned)
- Slab edge = R-8
- Basement wall = R-11 (interior) = R-10 (exterior)

Insulation R-Values (per inch)

<table>
<thead>
<tr>
<th>Type of Insulation</th>
<th>R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberglass Batt</td>
<td>3.14</td>
</tr>
<tr>
<td>Fiberglass Blown (attic)</td>
<td>2.2</td>
</tr>
<tr>
<td>Fiberglass Blown (wall)</td>
<td>3.2</td>
</tr>
<tr>
<td>Rock Wool Batt</td>
<td>3.14</td>
</tr>
<tr>
<td>Rock Wool Blown (attic)</td>
<td>3.1</td>
</tr>
<tr>
<td>Rock Wool Blown (wall)</td>
<td>3.03</td>
</tr>
<tr>
<td>Cellulose Blown (attic)</td>
<td>3.13</td>
</tr>
<tr>
<td>Cellulose Blown (wall)</td>
<td>3.7</td>
</tr>
<tr>
<td>Vermiculite</td>
<td>2.13</td>
</tr>
<tr>
<td>Air-entrained Concrete</td>
<td>3.9</td>
</tr>
<tr>
<td>Urea terpolymer foam</td>
<td>4.48</td>
</tr>
<tr>
<td>Rigid fiberglass (> 4lb/ft³)</td>
<td>4</td>
</tr>
<tr>
<td>Expanded Polystyrene (beadboard)</td>
<td>4</td>
</tr>
<tr>
<td>Extruded Polystyrene</td>
<td>5</td>
</tr>
<tr>
<td>Polyurethane (foamed-in-place)</td>
<td>6.25</td>
</tr>
<tr>
<td>Polyisocyanurate (foil-faced)</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Attic Ventilation

- DON’T cover attic vents to save heat
- 1 sq.ft. free-vent area (FVA) per 150 sq.ft. of attic area
- Screens reduce FVA by 50%
- Split FVA equally between eaves & ridge
- Allow 1½” air space between insulation & roof
Crawl Space Moisture Control

• DON’T cover foundation vents to save heat
 – Leave open if house tests positive for radon
• 1 sq.ft. FVA per 450 sq.ft. of crawl space
Which Heating Fuel Source is the Best?

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Selling Unit</th>
<th>Avg. Efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>KwH</td>
<td>100-280</td>
</tr>
<tr>
<td>Natural gas</td>
<td>CCF (therm)</td>
<td>65</td>
</tr>
<tr>
<td>LP (propane) gas</td>
<td>Gallon</td>
<td>65-80</td>
</tr>
<tr>
<td>Wood</td>
<td>Cord</td>
<td>15-60</td>
</tr>
<tr>
<td>Wood pellets</td>
<td>Ton</td>
<td>80</td>
</tr>
<tr>
<td>Corn (shelled)</td>
<td>Bushel</td>
<td>80</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>Gallon</td>
<td>60</td>
</tr>
<tr>
<td>Kerosene</td>
<td>Gallon</td>
<td>85</td>
</tr>
<tr>
<td>Coal</td>
<td>Ton</td>
<td>60</td>
</tr>
<tr>
<td>Biomass</td>
<td>Ton</td>
<td>40</td>
</tr>
</tbody>
</table>
Standard Heating Unit (SHU)

• One SHU = 100,000 BTUs

• Cost per SHU
 \[\text{Cost per SHU} = \text{Fuel cost} \times \frac{100,000}{\text{(Heat Content} \times \text{Avg. Sys. Eff.)}}\]

• LP (propane) gas = $1.73/gal \times \frac{100,000}{(91,000 \text{ BTUs} \times 0.65)}
 = $2.93 per SHU

• Electricity = $0.10/KwH \times \frac{100,000}{(3413 \text{ BTUs} \times 1.00)}
 = $2.93 per SHU
How They Rank (8/24/15)

<table>
<thead>
<tr>
<th>Heating System</th>
<th>Fuel Cost</th>
<th>Cost per SHU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-tight stove - dry red oak</td>
<td>$140 / cord</td>
<td>$0.92</td>
</tr>
<tr>
<td>Geothermal heat pump</td>
<td>$0.10 / KwH</td>
<td>$1.05</td>
</tr>
<tr>
<td>Pellet stove - shelled corn</td>
<td>$3.70 / bushel</td>
<td>$1.18</td>
</tr>
<tr>
<td>Pellet stove - wood pellets</td>
<td>$210 / ton</td>
<td>$1.60</td>
</tr>
<tr>
<td>LP gas H.E. forced-air furnace</td>
<td>$1.21 / gallon</td>
<td>$1.66</td>
</tr>
<tr>
<td>Biomass burner</td>
<td>$100 / ton</td>
<td>$1.74</td>
</tr>
<tr>
<td>Air-to-air electric heat pump</td>
<td>$0.09 / KwH</td>
<td>$1.78</td>
</tr>
<tr>
<td>LP gas older forced-air furnace</td>
<td>$1.21 / gallon</td>
<td>$2.05</td>
</tr>
<tr>
<td>Natural gas forced-air furnace</td>
<td>$1.70 / therm</td>
<td>$2.13</td>
</tr>
<tr>
<td>Forced-air furnace - #2 fuel oil</td>
<td>$2.21 / gallon</td>
<td>$2.66</td>
</tr>
<tr>
<td>Electric resistance heat</td>
<td>$0.10 / KwH</td>
<td>$2.93</td>
</tr>
</tbody>
</table>
Air Filters - MERV

Minimum Efficiency Reporting Value (MERV)

ASHRAE Standard 52.2
Efficiency in collecting very small particles

MERV Ratings

<table>
<thead>
<tr>
<th>MERV</th>
<th>PARTICLE CONTAMINANT</th>
<th>TYPICAL CONTROLLED SIZE (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 4</td>
<td>>10.0</td>
<td>Pollen, sanding dust, textile and carpet fibers</td>
</tr>
<tr>
<td>5 – 8</td>
<td>3.0 – 10.0</td>
<td>Mold, spores, hairspray, cement dust</td>
</tr>
<tr>
<td>9 – 12</td>
<td>1.0 – 3.0</td>
<td>Legionella, lead dust, welding fumes</td>
</tr>
<tr>
<td>13 – 16</td>
<td>0.3 – 1.0</td>
<td>Bacteria, most tobacco smoke, insecticide dust, copier toner</td>
</tr>
<tr>
<td>17 – 20</td>
<td>≤ 0.3</td>
<td>Virus, combustion particles, radon progeny</td>
</tr>
</tbody>
</table>
Poorly sealed filter access panel
Comparing Light Bulbs

- Watt = amount of energy used
- Lumen = amount of light produced

<table>
<thead>
<tr>
<th>Light Output (lumens)</th>
<th>Incandescent 1,200 hour life (watts)</th>
<th>Fluorescent 8,000 hour life (watts)</th>
<th>LED 50,000 hour life (watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>40</td>
<td>10</td>
<td>4-5</td>
</tr>
<tr>
<td>800</td>
<td>60</td>
<td>15</td>
<td>6-8</td>
</tr>
<tr>
<td>1100</td>
<td>75</td>
<td>20</td>
<td>9-13</td>
</tr>
<tr>
<td>1600</td>
<td>100</td>
<td>26</td>
<td>16-20</td>
</tr>
<tr>
<td>2600</td>
<td>150</td>
<td>28</td>
<td>25-28</td>
</tr>
</tbody>
</table>
More Ways to Save Energy

- Replace/clean furnace filter every 1-3 months
- Energy-saving (programmable) thermostats ($50-$100)
 - Winter: Set heating unit to 68°F max. (63°F night-time)
 - 3% more energy use per degree increase
 - Summer: Set air conditioning to 78°F min.
 - 8% more energy use per degree decrease
- Clean lime from water heater
- Re-level blown-in attic insulation
- Set ceiling fans for season
- Insulate attic access door
- Unplug appliances when not used
- Put tight-fitting doors on open fireplaces
More Ways to Save Energy

• Clean refrigerator coils; remove frost from freezers
• Keep lights clean; shut off when not in use
• Use south-facing windows to collect solar heat
• Personal attitude & behavior
• Wear layered warm clothes indoors during winter
• Take short showers instead of baths
• Regulate windows & doors (train kids)
• Upgrade to EnergyStar-efficient appliances
• Plant trees (deciduous on south; evergreens on north)
Investing in Energy Efficiency

<table>
<thead>
<tr>
<th>Energy Measure</th>
<th>Return on Investment, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change to fluorescent lamps</td>
<td>41</td>
</tr>
<tr>
<td>Seal heating and cooling ducts</td>
<td>41</td>
</tr>
<tr>
<td>Upgrade to EnergyStar clothes washer</td>
<td>37</td>
</tr>
<tr>
<td>Replace refrigerator with EnergyStar unit</td>
<td>37</td>
</tr>
<tr>
<td>Install EnergyStar programmable thermostat</td>
<td>30</td>
</tr>
<tr>
<td>Install R-12 water heater insulation jacket</td>
<td>28</td>
</tr>
<tr>
<td>EnergyStar heat pump to replace old HVAC system</td>
<td>19</td>
</tr>
<tr>
<td>Upgrade to EnergyStar dishwasher</td>
<td>18</td>
</tr>
<tr>
<td>Weatherizing and sealing the home</td>
<td>9</td>
</tr>
<tr>
<td>Increase wall and attic insulation to DOE levels</td>
<td>8</td>
</tr>
</tbody>
</table>

Source: Lawrence Berkley National Laboratory, 1997 costs
My Top 10 Cheap List for Homes

- Caulk outside joints where dissimilar materials meet
- Weatherstrip exterior door and window gaps
- Install interior storm window kits on single-pane glass
- Insulate older water heaters; set temp. to 120-135°F
- Seal air duct leaks; put tight-fitting doors on open fireplaces
- Use south-facing windows to collect solar heat
- Use CFLs/LEDs; keep lights clean; shut off when not in use
- Add attic insulation if now less than 6 inches thick
- Wear clothing in layers & set back thermostat
- Involve whole family in energy management program
Farms
Cutting Tractor Fuel Consumption

• Do a general tune-up to manufacturer specs.
• Replace tractor oil & fuel filters to improve efficiency
 – 3.5% increase if somewhat dirty
 – 10-20% increase if extremely dirty
• Match the tractor to the load
• “Gear up and throttle down”
 – Reduce engine RPM up to 20% in higher gear
 – 15-30% fuel saved
Cutting Tractor Fuel Consumption

• Use radial tires. Adjust tire pressure based on load
 – 6-7 psi normal
 – 10-12 psi for rough terrain or heavy loads
• Ballast tractor to give 8-15% wheel slippage
• Combine or cut trips over the field (no-till)
Livestock Buildings

• Most heat loss occurs through ventilation
 – Resist temptation to under-ventilate to save energy; fine-tune ventilation instead
 – Ventilate to provide about 60% relative humidity

• Do regular maintenance on environmental controls
 – Clean shutters, fan blades & motor fins
 – Check heater controller settings (so heat & fans don’t compete)

• Check curtains for tight fits; patch holes

• Insulate heated buildings
 – Keep insulation dry with vapor barriers
 – Protect insulation from rodents (sanitation, screen out, baits, traps)
More Farm Energy-Saving Tips

• Soil test before applying lime or fertilizer
• Know the fertilizer value of your manure & use it
• Use cattle instead of machinery to harvest forage
• Spray weeds instead of brush-hogging them
• Calibrate your sprayer before applying chemicals
• Use radios or cell-phones to communicate rather than driving
• Install impact barriers around fuel tanks
• Install locks on fuel tanks; remove keys from tractors
That’s a lot to chew on!
Robert A. (Bob) Schultheis
Natural Resource Engineering Specialist
Webster County Extension Center
800 S. Marshall St.
Marshfield, MO 65706
Voice: 417-859-2044
Fax: 417-468-2086
E-mail: schultheisr@missouri.edu
Web: extension.missouri.edu/webster

Program Complaint Information
To file a program complaint you may contact any of the following:

University of Missouri
- MU Extension AA/EEO Office
 109 F. Whitten Hall, Columbia, MO 65211
- MU Human Resources Office
 130 Heinkel Bldg, Columbia, MO 65211

USDA
- Office of Civil Rights, Director
 Room 326-W, Whitten Building
 14th and Independence Ave., SW
 Washington, DC 20250-9410

The University of Missouri does not discriminate on the basis of race, color, national origin, ancestry, religion, sex, sexual orientation, gender identity, gender expression, age, genetic information, disability, or protected veteran status.