Fertigation and Fertilizer Proportioning

by

Bob Schultheis
Natural Resource Engineering Specialist / CPD

Special thanks to David Trinklein, Division of Plant Sciences, University of Missouri, for parts of this presentation

Greenhouse and High Tunnel Workshop
Mountain Grove, MO
August 4, 2016
If you take care of your soil, the soil will take care of your plants.
Plant Nutrition vs. Plant Fertilization

Nutrition:
Availability and type of chemical elements in plant

Fertilization:
Adding nutrients to growing medium in proper amounts
Why do we still have problems?

• Focus has been on solving problems
 – Delay crops
 – Reduce quality
 – Lower profits

✦ “Need to focus on preventing problems”
What is Fertigation?

- Fertilizer + Irrigation = Fertigation
- Nutrient “spoon feeding”
- Can be done by:
 - hand
 - sprinkler system
 - drip irrigation system
Fertigation

• Advantages
 – Relatively uniform fertilizer applications
 – Flexibility in timing of applications
 – Less fertilizers used
 – Reduced costs

• Disadvantages
 – Potential contamination hazard from equipment malfunctions
 – Backflow prevention devices required
 – Careful handling of liquid fertilizers
Objectives of Fertigation

- Maximize profit by applying the right amount of water and fertilizer
- Minimize adverse environmental effects by reducing leaching of fertilizers and other chemicals
Nutrition Affected By

• Chemical considerations
 – pH - water, fertilizer solution
 – Alkalinity - water, fertilizer solution
 – EC - water, fertilizer solution

• Fertilizer analysis
 – Macronutrients, micronutrients

• Non-nutritional elements – possible toxicities
 – Na, Cl, F, Al
pH

- pH affects the solubility of fertilizers and the efficacy of pesticides and growth regulators. The higher the water pH, the less soluble these materials are.
Influence of pH on nutrient availability*

*based on a soilless substrate containing sphagnum peat moss, composted pine bark, vermiculite, and sand

Reference: www.ces.ncsu.edu/depts/hort/hil//hil-558.html
Problems Associated With Improper pH

<table>
<thead>
<tr>
<th>Low pH</th>
<th>High pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxic:</td>
<td>Deficient:</td>
</tr>
<tr>
<td>• Iron</td>
<td>• Iron</td>
</tr>
<tr>
<td>• Manganese</td>
<td>• Manganese</td>
</tr>
<tr>
<td>• Zinc</td>
<td>• Zinc</td>
</tr>
<tr>
<td>• Copper</td>
<td>• Copper</td>
</tr>
<tr>
<td>Deficient:</td>
<td>Deficient:</td>
</tr>
<tr>
<td>• Calcium</td>
<td>• Calcium</td>
</tr>
<tr>
<td>• Magnesium</td>
<td>• Magnesium</td>
</tr>
<tr>
<td>Sensitive:</td>
<td>Sensitive:</td>
</tr>
<tr>
<td>• Ammonium-N</td>
<td>• Ammonium-N</td>
</tr>
</tbody>
</table>

- Low pH: pH levels below 5.0
- High pH: pH levels above 8.0
pH Adjustment

- **Raise pH**
 - Use fertilizer with lower acid residue
 - ammonium vs. nitrate
 - calcium compounds
 - Apply limestone
 - calcitic -- CaCO_3
 - dolomitic -- $\text{CaMg(CO}_3)_2$
 - hydrated -- Ca(OH)_2
pH Adjustment

- **Lower pH**
 - Use fertilizer with acid residue
 - Apply sulfur-containing compounds
 \[\text{S} + \text{O}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4 \rightarrow 2 \text{H}^+ + \text{SO}_4^{2-} \]
 (requires action of microbes)
 - Sulfuric acid
GUARANTEED ANALYSIS

NET WEIGHT 25 POUNDS (11.34 KG)

PETERS® GENERAL PURPOSE SPECIAL 20-10-20

GUARANTEED ANALYSIS

TOTAL NITROGEN (N) .. 20%

12.00% NITRATE NITROGEN

8.00% AMMONIACAL NITROGEN

AVAILABLE PHOSPHORIC ACID (P₂O₅) 10%

SOLUBLE POTASH (K₂O) .. 20%

Primary Plant Nutrient Sources: Ammonium Nitrate, Ammonium Phosphate, Potassium Nitrate.

Potential Acidity **422 lbs. Calcium Carbonate Equivalent Per Ton.**

Manufactured by: Peters® Fertilizer Products, W. R. GRACE & CO., Fogelsville, Pa. 18061
GUARANTEED ANALYSIS

NET WEIGHT 25 POUNDS (11.34 KG)

PETERS® ACID SPECIAL 21-7-7

GUARANTEED ANALYSIS

TOTAL NITROGEN (N) .. 21%

9.05% AMMONIACAL NITROGEN

11.95% UREA NITROGEN

AVAILABLE PHOSPHORIC ACID (P₂O₅) 7%

SOLUBLE POTASH (K₂O) .. 7%

Primary Plant Nutrient Sources: Urea, Ammonium Phosphate, Ammonium Sulfate, Muriate of Potash.

Potential Acidity 1560 lbs. Calcium Carbonate Equivalent Per Ton.

Manufactured by: Peters® Fertilizer Products, W. R. GRACE & CO., Fogelsville, Pa. 18051
Conclusions

• pH greatly affects plant nutrition
• Soilless media prone to pH changes
• Many factors influence pH change
• Monitoring pH important
 — Adjust according to crop and need
Nutrition Affected By

• Chemical considerations
 – pH - water, fertilizer solution
 – Alkalinity - water, fertilizer solution
 – EC - water, fertilizer solution

• Fertilizer analysis
 – Macronutrients, micronutrients

• Non-nutritional elements – possible toxicities
 – Na, Cl, F, Al
Alkalinity

• Alkalinity establishes the buffering capacity of water and affects how much acid is required to change the pH
 • Don’t confuse with alkaline pH

Reference: www.ces.ncsu.edu/depts/hort/hil//hil-558.html
Influence of alkalinity on acidifying water

![Graph showing the influence of alkalinity on water pH](image)

- **Grower A**: (1.42 meq/L alkalinity) (9.3 pH and 71 mg/L alkalinity)
- **Grower B**: (6.20 meq/L alkalinity) (8.3 pH and 310 mg/L alkalinity)

pH = 5.8

Grower B needed more than 4 times the acid to reach pH of 5.8 than Grower A!

Reference: www.ces.ncsu.edu/depts/hort/hil/hil-558.html
Water Source Quality

Good
- Well = check pH & hardness
- Municipal = may be expensive
- Spring = may not be dependable
- River or stream = depends on runoff
- Lake or pond water = sand filters
- Pump to tank on hill = limited use

Poor
Water Quality Analysis

• Inorganic solids = sand, silt
• Organic solids = algae, bacteria, slime
• Dissolved solids (<500 ppm)
 – Iron & Manganese
 – Sulfates & Chlorides
 – Carbonates (calcium)
• pH (5.2-6.8 preferred in greenhouses)
• Hardness (<150 ppm)
• E. coli bacteria

Resources:
http://soilplantlab.missouri.edu/soil/water.aspx
https://utextension.tennessee.edu/publications/Documents/SP740-B.pdf
Plugging Potential of Drip Irrigation Systems

<table>
<thead>
<tr>
<th>Factor</th>
<th>Moderate (ppm)*</th>
<th>Severe (ppm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspended solids</td>
<td>50-100</td>
<td>>100</td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH**</td>
<td>7.0-7.5</td>
<td>>7.5</td>
</tr>
<tr>
<td>Dissolved solids</td>
<td>500-2000</td>
<td>>2000</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.1-1.5</td>
<td>>1.5</td>
</tr>
<tr>
<td>Iron</td>
<td>0.1-1.5</td>
<td>>1.5</td>
</tr>
<tr>
<td>Hardness***</td>
<td>150-300</td>
<td>>300</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>0.5-2.0</td>
<td>>2.0</td>
</tr>
</tbody>
</table>

* ppm = mg/L ** pH is unitless *** Hardness: ppm = gpg x 17
Nutrition Affected By

• Chemical considerations
 – pH - water, fertilizer solution
 – Alkalinity - water, fertilizer solution
 – EC - water, fertilizer solution

• Fertilizer analysis
 – Macronutrients, micronutrients

• Non-nutritional elements – possible toxicities
 – Na, Cl, F, Al
How do we actually get the fertilizer to our plants?
Application Options

- Pre-plant
 - Substrate incorporation
- Post-plant
 - Top dress/incorporate
 - Liquid feed
(Might use all three on one crop)
Substrate Incorporation

• Separately
 – Ground limestone (Ca, for pH)
 – Superphosphate (P)
 – Trace elements
 – Slow release materials

• Package
 – “Starter charge” - liquid or granular
Fertilizer Types

• Granular
 – Super phosphate, gypsum
• Slow (controlled) release
 – Osmocote®, MagAmp®
• Water soluble
 – Excel®, Jack’s Classic®
• Organic
 – Bloodmeal, alfalfa meal
• Chelated
 – Sequestrene 330®
Slow Release Fertilizers

+ Extended release period
+ Fewer nutrients leached
+ Use instead of or with liquid feed
+ Form of automation
 - Release rate varies
 - Affects salts measurement
 - Hard to leach excess salts
Slow Release--Types

- Plastic encapsulated
 - Osmocote® (analysis varies)
 - 12-week to 9-month release
- Slowly soluble fertilizers
 - Mag-Amp®
- Sulfur-coated urea
 - Primarily for turf
Post-plant (Liquid)

- Most commonly used
- Constant feed (CLF)
 - dilute concentration
 - every watering
- Periodic feed
 - more concentrated
 - intervals (e.g. weekly)
Feeding Rates

- **Constant liquid feed**
 - 250 ppm N (top)
 - 150 ppm N (sub)

- **Periodic feeding**
 - 500 ppm N weekly may top dress with Osmocote®

- **Bedding plants**
 - 150 - 250 ppm N as needed
Nutritional Monitoring

• Visual inspection
 – Too late
 – Symptoms = impaired growth
• Check “vital signs” of plant
 – pH and soluble salts
• Foliar (tissue) analysis
 – Once per crop (expensive)
It’s All About Balance of Elements

Ratio in medium

Ratio in plants
Fertilizing Equipment
How Injectors (Proportioners) Work

• Two types
 – Venturi (Hozon®, Syphonex®, EZ-Flo®, Add-It®, Young®)
 – Positive displacement (Dosatron®, DosMatic®, Anderson®, Smith®)

Reference: extension.uga.edu/publications/detail.cfm?number=B1237
Conversions

To get from ratios to percent:
\[(1/50) \times 100 = 2\%\]

To get from percent to ratios:
\[100/2\% = 1:50\]

<table>
<thead>
<tr>
<th>Injector Ratios</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1:50</td>
<td>= 2.0%</td>
</tr>
<tr>
<td>1:100</td>
<td>= 1.0%</td>
</tr>
<tr>
<td>1:200</td>
<td>= 0.5%</td>
</tr>
<tr>
<td>1:500</td>
<td>= 0.2%</td>
</tr>
<tr>
<td>1:1000</td>
<td>= 0.1%</td>
</tr>
</tbody>
</table>
Venturi Proportioners

- Use pressure differences to draw stock solution into water line
- Pressure changes cause different uptake rate
- Must calibrate for local conditions
 - Water pressure
 - Hose length
- Can require large stock tank

Water flow:

![Diagram](image)

Suction:

Stock tank:
Estimating Stock Tank Size

- Gallon volume of square or rectangular tank
 \[= \text{Length} \times \text{Width} \times \text{Depth} \text{ in feet} \times 7.5\]
 - Example:
 \[6' \times 4'' \times 2.5' \times 7.5 = 450 \text{ gallons}\]

- Gallon volume of round tank (approximate)
 \[= \text{Diameter} \times \text{Diameter} \times \text{Depth} \text{ in feet} \times 6\]
 - Example:
 \[2' \times 2' \times 3' \times 6 = 72 \text{ gallons}\]
Venturi Proportioner Examples

• Hozon®
 – 1:16 ratio, 35 PSI minimum
 – Unit not more that 50’ from hose end
 – Backflow preventer included
 – Do not use with drip irrigation system
 – http://hozon.com

• Grow More®
 – 1:16 ratio, 30-90 PSI range
 – Unit not more that 75’ from hose end
 – Backflow preventer included
 – Do not use with drip irrigation system
Venturi Proportioner Examples

• EZ-Flo®
 – 1:1000 to 1:100 variable ratio
 (2/3 tsp/gal to 2 TBS/gal)
 – 2 GPM min. flow rate
 – Backflow preventer not included
 – http://ezfloinjection.com

• Add-It®
 – 1:200 ratio, 10-80 PSI range
 – 0.5-20 GPM min. flow rate
 – Backflow preventer not included
 – http://fertilizerdispensers.com/services/add-it.htm
Venturi Proportioner Examples

• Young®
 – 1:30 to 1:200 variable ratio
 – 2 GPM min. flow rate
 – Backflow preventer not included
 – Very accurate
Positive Displacement

• Flowing water drives piston that pumps stock solution
 – No electricity used
• Rated with min. & max. flow rates depending on model
• Not affected by pressure changes (within range)
Positive Displacement Examples

• Dosatron® (variable)
 – 1:3000 to 1:4 ratios, 4.3-85 PSI
 – 0.04-14 GPM flow rate
 – Dosing proportional to water flow
 – Operates without electricity, using water pressure as the power source
 – http://www.dosatron.com
Positive Displacement Examples

• DosMatic®
 – 1:4000 to 1:10 ratios, 3-100 PSI
 – 0.4-45 GPM flow rate
 – Operates without electricity, using water pressure as the power source

• Anderson®

• Smith®
Proportioner Installation

- By-pass line for clear water
- Dual lines preferable
- Backflow preventer
- Siphoning from stock tanks
Proportioner Calibration

• Check frequently
• < 1:100 : volume uptake vs volume output

• Measure EC of output solution
• In-line EC probe constantly monitors output
Checking Injector/Calculations

• Check accuracy with salts meter every time new batch of stock is mixed
• Fertilizer companies supply tables of EC values for each of their fertilizers at various concentrations

20-10-20 peat-lite special
• 200 ppm = EC of 1.30
• 250 ppm = EC of 1.63
• 300 ppm = EC of 1.95

Solubility of Selected Fertilizers

<table>
<thead>
<tr>
<th>Solubility of Fertilizer in Pure Water, lbs./gal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium nitrate</td>
</tr>
<tr>
<td>Calcium nitrate</td>
</tr>
<tr>
<td>Potassium chloride</td>
</tr>
<tr>
<td>Potassium nitrate</td>
</tr>
</tbody>
</table>

- If two or more fertilizers are to be mixed in the same solution, test their combined solubility by first mixing them in 1-5 gallons of water

Reference: http://extension.uga.edu/publications/detail.cfm?number=B1130
Stock Mixing

High quality, water soluble materials
Mix in separate tank - pump from another

Best to use warm water when mixing stock - increases solubility
Use separate tanks for different fertilizers
Stock Mixing Cautions

- High concentrations (>100:1) can cause precipitates
- Precipitates form sludge in tank bottom
- Use two injectors
- Use dual head injector
Calculations

To determine amount of fertilizer to add to make stock solution:

\[
\frac{\text{injector ratio}}{1} \times \frac{\% \text{ element}}{100} \times 1.35 = \text{ounces fertilizer/gallon stock}
\]
Calculations

How much fertilizer does one add to a 5 gallon bucket of stock to get 200 ppm N from a 20-10-20 fertilizer using a Hozon® injector (1:16)?

\[
\frac{16}{20} \times \frac{200}{100} \times 1.35 = 0.8 \times 2.0 \times 1.35 = 2.16 \text{ oz/gal}
\]

\[
2.16 \text{ oz/gal} \times 5 \text{ gal} = 10.8 \text{ oz in bucket}
\]
Calculations

How much fertilizer does one add to a 20 gallon tank of stock to get 250 ppm N from a 21-5-19 fertilizer using a Smith® injector (1:100)?

\[
\frac{100}{21} \times \frac{250}{100} \times 1.35 = 4.76 \times 2.5 \times 1.35 = 16.1 \text{ oz/gal}
\]

\[
16.1 \text{ oz/gal} \times 20 \text{ gal} = 322 \text{ oz}
\]

\[
322 \text{ oz} / 16 \text{ oz per lb} = 20.1 \text{ lbs fertilizer in tank}
\]
Calculations

How much fertilizer do you add to a 50 gallon tank to get 200 ppm-N from a 15-0-15 fertilizer using a 1:100 injector?

Bags? (25 lbs each)

\[
\frac{55.5}{25} = 2 + \text{bags}
\]

Set up proportion:

\[
\frac{55 \text{ lbs}}{50 \text{ gal}} = \frac{50 \text{ lbs}}{X \text{ gal}}
\]

\[
55X = 2500
\]

\[
X = 45.45 \text{ gallons}
\]

2 bags + 45.5 gallons water
Daily Operations

Which is easier, more efficient and more precise?

55.5 lbs in 50 gallons

2 - 25 lb bags
Weigh out 5.5 lbs from 3rd bag
Fill tank to 50 gal.

50 lbs in 45.5 gallons?

2 - 25 lb bags
Fill tank to 45.5 gal.

Less mess! No open bags!
Fertigation Tips

• Get water supply tested (pH, alkalinity, TDS, etc.)
• Use backflow preventer if required
• Install the injector out of direct sunlight
 – Make sure stock tank is opaque and covered
• Install injector after the timer so tank does not stay under constant pressure
• Always drain unit if there is a chance of freezing
• Be sure fertilizer is 100% water-soluble
 – Make liquid concentrate first from water-soluble powders
 – Strain concentrate to remove undissolved granules
Fertigation Tips

• Regularly check suction tube filter in stock tank for clogs and holes
• Minimum injection duration of 45-60 minutes is recommended
• Maximum injection duration depends on soil type and nutrient and water requirements of the crop
 – A “reasonable” maximum should not exceed 2 hours per zone
Drip Irrigation Control Assembly

- Control timer
- Shut-off valve
- Backflow preventer
- Pressure gauge
- Pressure regulator
- Air relief valve
- Filter
- Flow from water supply
- Chemical injector
- Shut-off valve
Taking a plant from “seed to sale” involves proper fertilization.

There are many ways to get the job done.

The best way is the one that works consistently for you.

Conclusion
That’s a lot to chew on!
Robert A. (Bob) Schultheis
Natural Resource Engineering Specialist
Webster County Extension Center
800 S. Marshall St.
Marshfield, MO 65706
Voice: 417-859-2044
Fax: 417-468-2086
E-mail: schultheisr@missouri.edu
Web: extension.missouri.edu/webster

Program Complaint Information
To file a program complaint you may contact any of the following:

University of Missouri
- MU Extension AA/EEO Office
 109 F. Whitten Hall, Columbia, MO 65211
- MU Human Resources Office
 130 Heinkel Bldg, Columbia, MO 65211

USDA
- Office of Civil Rights, Director
 Room 326-W, Whitten Building
 14th and Independence Ave., SW
 Washington, DC 20250-9410

The University of Missouri does not discriminate on the basis of race, color, national origin, ancestry, religion, sex, sexual orientation, gender identity, gender expression, age, genetic information, disability, or protected veteran status.