Baleage Systems -- Planning for Success

Bob Schultheis
Natural Resource Engineering Specialist
Silage Producers' Short Course
Lebanon, Missouri
November 10 & 12, 2015

Key Factors

- Quality at time of harvest
 - Baleage only preserves -- does not enhance forage quality
- Suitability of forage for ensiling
- Harvest and preservation techniques
- Storage methods

Best Forage Cutting Stage

- Tall fescue / Native WSG = boot
- Orchardgrass = blooms emerged
- Bermudagrass = every 28 days
- Caucasian bluestem = late boot
- Red clover = 1/4 to 1/2 bloom
- Alfalfa = 1/10 bloom, then every 28 days
- Lespedeza = 30% bloom
- Cereal crops = boot to milk

Stage of Growth Affect Intake

The leaves contain about 2/3rds of the plant nutrients

Crops to Wrap

- Legumes
 - Alfalfa
 - Red clover
 - Soybean
- Cool Season Grasses
 - Tall fescue
 - Wheat / Triticale / Rye
 - Annual Ryegrass
- Warm Season Grasses
 - Forage sorghum
 - Sudangrass
 - Pearl millet
 - Immature corn

Grasses vs. Legumes

- Grasses tend to ferment better than do legumes
 - More water-soluble carbohydrates
- pH near 4 for all grass treatments
- Much more acid production than in alfalfa silage
Forage Moisture Affects Dry Matter Harvest & Storage Losses

- Forage Moisture Testing
 - Heater/fan dryer (Koster® unit)
 - Electrical conductance moisture meter
 - Microwave + scale

Harvest Moisture Content Depends on Silo Type

- Conventional tower silos = 63–68% M.C.
- Silage bales = 50-60% M.C.
- Horizontal silos = 65–70% M.C.
- Limited-oxygen silos = 55–60% M.C.
- Silo bags = 65% M.C.

Silage Biology

- Baled silage
 - Flexible harvest options
 - Less field drying time
 - Greater harvest window
 - Less weather risk
 - Lower losses
 - Harvest & storage
 - More uniform product
 - No taxable structure

- Baled Hay
 - More marketable
 - Horses
 - Lower trucking costs
 - No fermentation
 - Less equipment
 - Less plastic disposal issues

Source: Dr. Kevin Shinners, University of Wisconsin, 2010
Baleage vs. Chopped Silage

<table>
<thead>
<tr>
<th>Baleage</th>
<th>Chopped Silage</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Baled silage</td>
<td></td>
</tr>
<tr>
<td>– Less expensive equipment</td>
<td></td>
</tr>
<tr>
<td>– Wider moisture range</td>
<td></td>
</tr>
<tr>
<td>– Targeted feeding</td>
<td></td>
</tr>
<tr>
<td>– No taxable structure</td>
<td></td>
</tr>
<tr>
<td>– Ideal for small operator</td>
<td></td>
</tr>
<tr>
<td>– Easier to market</td>
<td></td>
</tr>
<tr>
<td>• Chopped silage</td>
<td></td>
</tr>
<tr>
<td>– Better fermentation</td>
<td></td>
</tr>
<tr>
<td>– More versatile</td>
<td></td>
</tr>
<tr>
<td>– High capacity</td>
<td></td>
</tr>
<tr>
<td>– Easier TMR mixing</td>
<td></td>
</tr>
<tr>
<td>– Less sorting</td>
<td></td>
</tr>
</tbody>
</table>

Source: Dr. Kevin Shinners, University of Wisconsin, 2010

Tube vs. Individual Wrapping

<table>
<thead>
<tr>
<th>Tubes</th>
<th>Chopped Silage</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Tubes</td>
<td></td>
</tr>
<tr>
<td>– Less plastic used</td>
<td></td>
</tr>
<tr>
<td>– Greater productivity</td>
<td></td>
</tr>
<tr>
<td>– Less labor</td>
<td></td>
</tr>
<tr>
<td>• Chopped silage</td>
<td></td>
</tr>
<tr>
<td>– Targeted feeding</td>
<td></td>
</tr>
<tr>
<td>– Marketable product</td>
<td></td>
</tr>
<tr>
<td>– Occupies less area</td>
<td></td>
</tr>
<tr>
<td>– Less aerobic loss at feedout</td>
<td></td>
</tr>
</tbody>
</table>

Source: Dr. Kevin Shinners, University of Wisconsin, 2010

Equipment Needed for Baleage

- Mower
- Rake
- Baler capable of baling wet forage
- Tractor of sufficient horsepower to carry bales safely
- Bale spear or grapple
- Bale wrapper

Making Good Baleage

- **Equipment Needed for Baleage**
 - Mower
 - Rake
 - Baler capable of baling wet forage
 - Tractor of sufficient horsepower to carry bales safely
 - Bale spear or grapple
 - Bale wrapper

- **Making Good Baleage**
 - Make bales as dense as possible
 - Drive slowly with high PTO speed for tight, dense bales
 - Longer fiber slows fermentation
 - Don’t wrap in the rain
 - Make uniform bale shape and size
 - Inoculants (*Lactobacillus buchneri*) may help if the moisture isn’t right – speeds up lactic acid formation

- **Making Good Baleage**
 - Tie with plastic twine, net-wrap or untreated sisal twine
 - Avoid treated sisal twine, which degrades the plastic film
 - Bales 4 ft. wide x 4-5 ft. diameter = 900-1300 lbs.
 - Larger bales use relatively less film but are harder to handle
 - Wrap close to storage site = less handling
 - How to wrap
 - Stretch to 70-80% of original width
 - Recommed 5 layers (high moisture) to 8 layers (low moisture)
 - Avoid wet conditions (film loses tackiness)

KEEP THE OXYGEN OUT!
Baleage - Wrapping

- Wrap as soon as possible after baling
 - Makes aerobic phase shorter, temperature lower
 - Hot, summer day: < 2 hours
 - Cool, fall day: < 8 hours
 - Depends on weather and type of forage
 - Not more than 12 hours
- Delayed wrapping prevents adequate fermentation as reflected in the higher pH value

Wrap Timing

- Wrap as soon as possible after baling
 - Makes aerobic phase shorter, temperature lower
 - Hot, summer day: < 2 hours
 - Cool, fall day: < 8 hours
 - Depends on weather and type of forage
 - Not more than 12 hours

Use High Quality Plastic

- Plastic wrap is ~1-mil low-density polyethylene
- Stretching increases cling and makes tight seal
 - Stretching also reduces thickness by up to 25%
 - Tear strength and tack (or “stickiness”) may vary among brands of wrap
- More layers increases distance O₂ must travel
 - High temps makes film more permeable
- White film better than black for Missouri climate
 - Reflects sunlight better and reduces radiational heating

Number of Wraps

- Lots of variables
 - Film quality, thickness, material density
 - Generally minimum of 4 layers (2 turns at 50% overlap)
 - More layers needed as:
 - Moisture decreases
 - Maturity increases
 - Baling crops with sharp stems
- New trends in film wrap
 - Higher density resins = better O₂ barrier
 - More pre-stretching
 - Thinner, narrower but longer = about same weight

Storage Treatment & Consumption

<table>
<thead>
<tr>
<th>Storage Treatment</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 layers</td>
<td>53%</td>
</tr>
<tr>
<td>4 layers</td>
<td>84%</td>
</tr>
<tr>
<td>6 layers</td>
<td>88%</td>
</tr>
<tr>
<td>Hay</td>
<td>64%</td>
</tr>
</tbody>
</table>
Making Good Baleage

- Fermentation process complete within 6-8 weeks (often 4 weeks)
 - Fermentation conditions can vary due to forage maturity, temperature and bale moisture differences
- Bales should be fed within one year of wrapping
 - Depends on forage moisture and maturity
 - If > 60% M.C., feed within 3 months
 - If 30-40% M.C., feed within 6 months
 - If 40-60% M.C. feed within 12 months as long as plastic integrity is maintained (9 months preferred)

Crude Protein of Alfalfa Baleage

<table>
<thead>
<tr>
<th>Moisture Content at Baling (%)</th>
<th>Pre-Storage</th>
<th>Post-Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>49</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>43</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>13</td>
<td>11</td>
</tr>
</tbody>
</table>

Digestibility of Alfalfa Baleage

<table>
<thead>
<tr>
<th>Moisture Content at Baling (%)</th>
<th>IVDMD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>65</td>
</tr>
<tr>
<td>49</td>
<td>60</td>
</tr>
<tr>
<td>43</td>
<td>55</td>
</tr>
<tr>
<td>22</td>
<td>50</td>
</tr>
</tbody>
</table>

Red Clover Baleage

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CP (%)</th>
<th>NDF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC baleage</td>
<td>21.1</td>
<td>35.7</td>
</tr>
<tr>
<td>RC hay</td>
<td>16.3</td>
<td>49.8</td>
</tr>
</tbody>
</table>

(60% moisture at baling)

Ryegrass Baleage Comparison to Hay

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CP %</th>
<th>TDN %</th>
<th>RFQ</th>
<th>ADG lbs/hd/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryegrass Hay</td>
<td>14.7 b</td>
<td>62.4 c</td>
<td>133 b</td>
<td>1.26 b</td>
</tr>
<tr>
<td>Ryegrass Baleage</td>
<td>16.3 a</td>
<td>65.9 a</td>
<td>174 a</td>
<td>1.94 a</td>
</tr>
<tr>
<td>Bermuda Hay</td>
<td>16.1 a</td>
<td>62.9 b</td>
<td>116 c</td>
<td>1.56 b</td>
</tr>
</tbody>
</table>

Replacement Heifers Gain – No additional supplementation
Ryegrass hay received a light rain shower on it
Unpublished data, Calhoun, GA, 2009, Dennis Hancock
P<0.10

Four Types of Wrappers are Available

- Platform
- In-line
- Swinging arm
- Bale spear
Platform Wrappers

• Features
 – Trailer or 3-point hitch
 – Round or square bales
 – Tractor hydraulics or gas engine
 – Plastic $3.50 - $4.50/bale for 4 layers
 – Some have a loader arm; most can be loaded with a front-end loader

Platform Wrappers

• Concerns
 – Plastic cost
 – Labor per bale
 – Most only accommodate 4 ft. wide bales

Square Bale Platform Wrappers

In-Line Wrappers

• Features
 – Bales end-to-end
 – Less labor for wrapping
 – Lower plastic cost (1/2 or less)

In-Line Wrappers

• Concerns
 – Uniformity of adjacent bales (both size and density)
 – End of rows need to be sealed by hand
 – A hole in the plastic can spoil a large area
 – Feedout rate (need to feed 2 or 3 bales per day to keep ahead of spoilage)

Other Wrappers

End-to-End Individual Wrap

• Concerns
 – Labor-intensive
 – Plastic on bottoms of bales
Baler-Wrapper Combination

Wrapping Efficiency

- Individual bale wrapper
 - 25-30+ bales per hour with experienced workers
 - About the same number of bales covered by a 20 in. x 6,000 ft. or 30 in. x 5,000 ft. roll of stretch-wrap plastic
- In-line wrapper
 - 40-50 bales per hour with experienced workers

In-Line Wrapper Example
Successful Round Bale Silage
(Tips from Windmill Cattle Co., LLC)

- Never mow more hay than you can easily bale and wrap the next day
- Set the mower conditioner for a narrow windrow
- Before baling, run several microwave oven moisture tests
- Use baler net wrap instead of twine to tie silage bales
- Keep the baler close behind the rakes
- Wrap silage bales as soon after baling as possible

Baleage - Transport

- Handle minimum possible
 - Avoid moving after 12 hours
- If bales must be moved, use a grapple to avoid puncturing plastic
- Keep loader low to prevent tractor overturn

Successful Round Bale Silage
(Tips from Windmill Cattle Co., LLC)

- Start a new line of bales by pushing against a stationary object
- Never position the wrapper on a side slope
- Put six layers of stretch wrap on the silage bales
- Adjust wrapper so that extra wrap is added where bales join
- When wrapping, alternate higher and lower moisture content bales (those baled earlier, with those baled later in the day)
- Have someone watch the operation of the wrapper

Baleage - Storage

- Store in a well-drained site
- Avoid woods, sharp stubble, wildlife
 - Mowing weeds discourages rodents
- Stack where possible, saves room
- Store round bales on flat end
 = more plastic, less “squish”
- Avoid stacking at high moisture
- Patch holes promptly
Baleage - Troubleshooting

• Caramelized or tobacco smell:
 – Heat damage – long delay from baling to wrapping
• Molds
 – O2, insufficient wraps, low moisture, low density, inoculation
• Rancid odor:
 – High moisture, clostridia, low sugar, insufficient LAB
• Heating, mold at feedout
 – Low moisture, high pH, feedout rate too slow

Film Recycling

• Unlawful to open-burn plastic in Missouri
 – Open, low-temp burning a bad idea
 – Dioxins released are toxic and potential carcinogens
 – Department of Natural Resources: 1-800-361-4827
 – http://dnr.mo.gov/pubs/pub2047.htm

Plastic Recycling

• Try to keep clean until removal
• May need to separate plastic types
• Store plastic indoors, under cover, or in special container
• Keep plastic clean and dry
• Increase density prior to shipping

Questions??

Program Complaint Information
To file a program complaint you may contact any of the following:

University of Missouri
• MU Extension AA/EEO Office
 109 F. Whitten Hall, Columbia, MO 65211

MU Human Resources Office
• 130 Heinkel Bldg, Columbia, MO 65211

USDA
• Office of Civil Rights, Director
 Room 326-W, Whitten Building
 14th and Independence Ave., 3SW
 Washington, DC 20250-9410

University of Missouri Extension provides equal opportunity to all participants in extension programs and activities, and employees and applicants for employment on the basis of their demonstrated ability, without discrimination on the basis of their race, color, religion, sex, sexual orientation, national origin, age, disability, or status as a protected veteran.