Pasture Management Strategies to Reduce Fescue Toxicity

Sarah Kenyon
Agronomy Specialist
KenyonS@missouri.edu
417-967-4545
1. History and Background
2. Management of Existing Stands
3. Managing Non-Toxic Stands
4. Management

Photo Courtesy of University of Missouri, Robert Kallenbach, and Greg Bishop-Hurley
The Endophyte

• *Neotyphodium coenophialum*
• Fungus found in stem, leaf sheaths & seed
• Increases progressively season long
• Cannot survive outside of the plant host

Roberts and Andrae, 2004
Neotyphodium coenophialum

- Produces alkaloids which confer pasture pest resistance but can also cause animal health problems
 - Peramine
 - Lolines
 - Ergovaline
Other Important Alkaloids

• Medicinal Alkaloids
 – Morphine, quinine, atropine, vincristine

• Addictive Alkaloids
 – Cocaine, heroin, caffeine, nicotine

• Very toxic in small amounts
 – Strychnine, coniine
Problems with Toxic, Endophyte-Infected Tall Fescue

- Lower conception rates
- Reduced milk production
- Reduced feed intake
- Rough hair coat
- Increased core body temperature in summer (leads to heat stress)
- Frozen nose, ears, tails, etc (in winter)
- Fescue foot
Problems with Toxic, Endophyte-Infected Tall Fescue

- Lower conception rates
 - Males and Females Effected
- Reduced milk production
- Reduced feed intake
- Rough hair coat
- Increased core body temperature in summer (leads to heat stress)
- Frozen nose, ears, tails, etc (in winter)
- Fescue foot
Economic Impact of Fescue Toxicosis

- US beef industry over $600 million annually
- Missouri beef industry over $160 million annually
- All US livestock sectors over $1 billion

(Roberts and Andrae, 2010)
Endophyte-Free Tall Fescue

Bouton et al., 2002

www.noble.org
Endophyte generally necessary for persistence south of this line

(West, 1998)
Plant-Endophyte Relationship

• Mutualistic Symbiosis
• Plant provides habitat and nutrition for the endophyte
• Endophyte (fungus) provides plant with multiple benefits
 – Drought Tolerance
 – Insect Resistance
 – Increase Nutrient Acquisition
 – Grazing Tolerance
 – Others

Roberts et al., 2002
Non-Toxic Endophyte-Infected Tall Fescue

E+ tall fescue: infected with toxic endophyte
E- tall fescue: not infected, or “endophyte-free”
E++ tall fescue: re-infected with “beneficial” endophyte

Roberts and Andrae, 2004
Non-Toxic Endophyte-Infected Fescue

- Non-toxic endophytes (Novel or Friendly)
 - Retain persistent qualities
 - Animal performance similar to E-

Experimental Estancia with ArkShield
Non-Toxic Endophyte-Infected Fescue

• Available Varieties:
 – Jesup Tall Fescue with MaxQ
 – Advance with AR37
 – Bar-Optima with E34
 – Texoma with MaxQII
 – Estancia with ArkShield
 – Martin with Protek
Test

Low
- Keep
 - E- Tall Fescue
 - NTE Tall Fescue
 - Other Forages

High
- Replace
- Manage
 - Alkaloid Management
 - Incremental Improvement
 - Rotate Pastures
 - Dilute
 - Supplement
 - Other
Non-Toxic Endophyte-Infected Fescue

- Animal performance similar to E-
- Animals perform better than E+

<table>
<thead>
<tr>
<th>Location</th>
<th>AR4</th>
<th>E-</th>
<th>E+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fayetteville, AR</td>
<td>1.43</td>
<td>1.55</td>
<td>0.93</td>
</tr>
<tr>
<td>Mt. Vernon, MO</td>
<td>1.21</td>
<td>1.21</td>
<td>0.55</td>
</tr>
</tbody>
</table>

West et al., 1998
Manage vs. Replace

• Manage Existing Stands
 – Alkaloid Management
 – Incremental Improvement

• Replace Toxic KY31 with Improved Varieties
 – Manage for Persistence
Incremental Improvement

Roberts and Andrae, 2004

Diagram showing daily gain (lb/acre) with different treatments:
- E+: Feed supplements
- E-: Dilute with legumes
- E++: Rotate to summer pasture
- E+ and E++ also include tall fescue only

Roberts and Andrae, 2004
• Moving cattle to summer pasture greatly increases animal performance
 – High temperatures can intensify the toxic effect of infected fescue
• 88 degrees F may be a threshold for significantly decreased gain.
• After moving, cattle should remain off of infected tall fescue for the entire summer
• U of A study with stockers

<table>
<thead>
<tr>
<th>Grazing Days</th>
<th>KY-31</th>
<th>MaxQ</th>
<th>Hi-Mag</th>
<th>Small Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADG</td>
<td>1.11</td>
<td>1.88</td>
<td>1.87</td>
<td>2.12</td>
</tr>
<tr>
<td>Gain/Head</td>
<td>116</td>
<td>199</td>
<td>199</td>
<td>138</td>
</tr>
</tbody>
</table>
Rotation To Other Forages

- Negative returns with KY-31
- Outstanding production with NE
- Planting NE fescue in place of small grains appears to be an equally viable option for cattlemen
• Thompson et al. (1993) summarized data from 12 independent studies
 – Concluded that interseeding legumes into E+ pastures increased steer ADG during spring and summer grazing periods
• Replacement with nontoxic forages has greater benefit.
 – Steer ADG is lower when grazing E+ tall fescue with clover
 compared to E- tall fescue with clover, even in E- pastures
 containing no clover
• Furthermore, interseeding legumes into highly
 infected (>50%) E+ stands may not always dilute the
 effects of fescue toxicosis.
 – Highly infected stands with and without clover had similar
 animal performance.
Incremental Improvement

Other Strategies:
1. Limit N Fertilizer
2. Clip Seedheads

Roberts and Andrae, 2004
Cattle that previously grazed E- and E++ tall fescue entered the feedlot 117 pounds heavier finished 108 pounds heavier than cattle that grazed E+ tall fescue.
Coffee et al. (2012) Study

• 5 Treatments
 – Spring Calving – All E+
 – Spring Calving – 75% E+ 25% NTE
 – Fall Calving – All E+
 – Fall Calving – 75% E+ 25% NTE
 – Spring Calving – All NTE

• Year-round grazing management
Calving Rates

All 4 contrasts were significant (P < 0.05)

--- 2 years ---

SE+ S25NE+ NE+ FE+ F25NE+

%
Calf performance

<table>
<thead>
<tr>
<th>Item</th>
<th>Fall</th>
<th>Spring</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 E+</td>
<td>25 NE+</td>
<td>100 NE+</td>
</tr>
<tr>
<td>Calving date</td>
<td>9/22</td>
<td>9/22</td>
<td>3/2</td>
</tr>
<tr>
<td>Act. wean wt<sup>ABC</sup></td>
<td>528</td>
<td>557</td>
<td>581</td>
</tr>
<tr>
<td>Wean age<sup>A</sup></td>
<td>233</td>
<td>233</td>
<td>232</td>
</tr>
<tr>
<td>Adj. wean wt<sup>ABC</sup></td>
<td>473</td>
<td>499</td>
<td>522</td>
</tr>
</tbody>
</table>

^A *Fall vs. spring (P < 0.05)*
^B NE100 vs spring NE25
^C 100% E+ vs. 25% NE+ (P < 0.10)
Managing NTE

• The question of persistence
 – Under normal grazing conditions, it is reasonable to expect that NTE tall fescue will survive as well as toxic E+ tall fescue and will persist much better than E- tall fescue.

 • Grazing Practices
 • Fertility
 • Hay Supplementation
Prevent Reinvansion of KY31

- Proper renovation is a must
 - Spray/Smother/Spray
 - 75% of Toxic plants are those that survive the renovation process
Prevent Reinvansion of KY31

- Minimize seed transfer in manure and hay
 - KY31 seed can be transferred in the manure or on hair/wool
 - Seed transfer is minimized in dense stands
 - Do not feed KY31 hay on NTE Stands
• Southwest Research Center, Mt. Vernon, MO
 – Monday, March 30, 2015
• Wurdack Farm, Cook Station, MO
 – Tuesday, March 31, 2015
• Beef Research & Teaching Farm, Columbia, MO
 – Wednesday, April 1, 2015
• Forage Systems Research Center, Linneus, MO
 – Thursday, April 2, 2015
Things to Remember

• Diluting existing stands is possible, but takes work
 – Try to achieve less-than 50% toxin in diet
 – Legumes
 – Rotation to summer pasture
 – Grain or other supplements

• Livestock perform best on NTE
 – KY31 is hard to kill . . . do a good job removing it during the renovation
 – Rotational grazing is a must
Thank You!

Sarah Kenyon
Agronomy Specialist
KenyonS@missouri.edu
417-967-4545