High Tunnel Heating Alternatives

by
Bob Schultheis
Natural Resource Engineering Specialist

for
Midwest Winter Vegetable
Production Conference
Joplin, MO
November 10-11, 2014
What We’ll Discuss

• Site selection and energy considerations
• Structural approaches for saving energy
• Technological approaches for saving energy
What is a High Tunnel?

• Unheated greenhouse; same as “hoop house”
 – Not for year-round protection or production
• Uses solar heat (back-up heaters optional)
• No electricity (fans, heaters, vents, etc.)
• Vented through sidewalls or end walls
• Drip irrigated
• Ground culture
• Single layer of plastic (6-mil)
High Tunnels - Advantages

• Extends growing season 4 weeks (maybe more)
 – Night-time air and soil temps indoors average 4°F higher than outdoors
 – Increases production & marketing opportunities
 – Offers shelter from wind, hail and insects, and can reduce disease pressure
 – Gives ability to control water supply

• Many designed as “drive through” for use of field equipment
High Tunnels - Disadvantages

• Labor-intensive; requires regular monitoring of temperatures
• Heavy rain, snow or wind can damage them
• High humidity early in growing season can lead to increased disease problems
• Construction requires more startup costs compared to conventional outdoor production
• Have to water crops, even when it rains
Greenhouse Energy Use

• Energy
 – 3rd largest cost (~15%)
 • 70-80% for space heating
 • 10-15% for electricity

• The Agronomic-Economic Balance
 – Light transmission for plant growth
 – Environmental factors – humidity, temperature
 – Structure cost
 – Operating costs
Site Selection and Energy Considerations
High Tunnels - Orientation

Without Solar Energy there is nothing

Wisely choose location
Orient the structure
 E to W for Oct – May
 N to S for year round production; most yearly light
Solar angle more critical than type of glazing for sunlight

Almeria, Pennsylvania 1999

Source: Gene Giacomelli - University of Arizona
High Tunnels - Location

• Place on 0-1% slope, well-drained, accessible site
• For stationary unit, plan to amend the soil each season or year to maintain fertility
• Orient perpendicular to the prevailing winds on your farm
 - All ventilation is manual, so you depend on the wind to ventilate
 - Face end wall toward winter wind
 - In Missouri, for our S-SW summer winds, use north-south orientation
What is the Best Location?

• Site selection factors
 – Availability of sunlight (8-10 hours/day)
 – Topography (near-level building site)
 – Wind break or hill to north (reduce heat loss)
 – Proximity to trees
 – Drainage (inside & outside)
 – Logistical convenience
 – Aesthetics

Decision usually permanent
Wind Breaks

- 15 mph wind doubles heat loss
- Wind break reduces loss ~ 5-10%
- Reduce snow accumulation
- Wind damage

H = Mature Height of Trees

50% speed reduction

4 to 6 x H

Prevailing Wind

4-5 rows
Mixture: Coniferous & Deciduous

Fast growing trees
Principles of Heat Loss

• Conduction
 – Heat conducted through a material
 – U-value – BTU/(hr-°F-sq.ft.)

• Convection
 – Heat exchange between a moving fluid (air) and a solid surface
 – Not of importance where fans are used

• Radiation
 – Heat transfer between two bodies without direct contact or transport medium – Sunlight

• Infiltration
 – Exchange of interior and exterior air through small leaks/holes in building shell
Calculating Heat Requirements

Basic equation =

sq. ft. greenhouse surface x temperature difference (inside temp.* minus outside temp.**) x 1.2 = BTU/hour heat needed

*Desired temperature in greenhouse

**Average low outside temperature for area
Example Heat Requirements

Assumptions:
Free-standing greenhouse
10’ W x 12’ L x 6’ H with
6/12 roof pitch

Calculations:
Sides: 2 x 6’ x 12’ = 144 sq.ft.
Ends: 2 x 6’ x 10’ = 120 sq.ft.
Roof: 2 x 5.5 x 12’ = 132 sq.ft.
Roof peaks: 2 x ½ x 10’ x 2.5 ‘ = 25 sq.ft.
TOTAL = 421 sq.ft.

421 sq. ft. x (65°F - 10°F) x 1.2 = 27,786 BTU/hour
heat needed

(about the same heating needs as 1,350 sq.ft. insulated home)
Example Heat Requirements

Assumptions:
Free-standing high tunnel
30’ W x 72’ L x 5’ H sidewall with
12.5’ H ~28° Gothic roof pitch

Calculations:
Ends: \(2 \times ((5’ \times 30’) + (7.5’ \times 30’/2))\) = 525 sq.ft.
Sides: \(2 \times (5’ \times 72’)\) = 358 sq.ft.
Roof: \(2 \times (15.4’ \times 72’)\) = 2218 sq.ft.
TOTAL = 3100 sq.ft.

3100 sq. ft. \(\times (45^\circ F - 10^\circ F) \times 1.2\) = 130,200 BTU/hour
heat needed

(about the same heating needs as four 1,600 sq.ft. insulated homes)
Structural Approaches for Saving Energy
Frame Shape

<table>
<thead>
<tr>
<th>Shape</th>
<th>Easy to construct</th>
<th>Holds up well in wind</th>
<th>Sheds snow moderately well</th>
<th>Less area for tall crops</th>
<th>Less expensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quonset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gothic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quonset
- Easy to construct
- Holds up well in wind
- Sheds snow moderately well
- Less area for tall crops
- Less expensive

Gothic
- More difficult to construct
- Stands up in wind moderately well
- Sheds snow well
- More growing space for tall crops
- More expensive

Gable
- More difficult to construct
- Does not hold up in wind as well
- Sheds snow well
- More growing space for tall crops
- More expensive
Frame Shape

• Sidewall height
 – Shorter walls require less heat in spring/fall
 – Taller walls give easier equipment access
 – Taller walls easier to ventilate summer heat

• Length
 – 2:1 length to width for temperature management
Layers of Plastic

- Single layer poly
- Double layer poly
- Dead air space provides insulation (4” max.)
- Inflating devices may be AC, DC solar electric, air-driven motors, or wind-driven passive systems
Factors affecting Solar Gain

• % light = % growth
• Glazing transmittance
 – Differences between materials - (75% to 94%)
 – Condensation – can reduce light 15-25%
 • Anti-condensate films (additive)
 • Anti-condensate spray (Sun Clear®)
 – Dust
 • Anti-dust additive
Double Poly Inflation Blower

- Located on inside but drawing air from outside
- Cold air has lower humidity
- Less condensation between sheets
- Jumpers to ensure proper inflation
Inflating Devices: DC Solar Electric

Photo credit: Tim Baker

Photo credit: Tim Baker

Photo credit: Tim Baker
Inflating Devices: Air-Driven Motor

Photo credit: Tim Baker
Inflating Devices: Wind-Driven
Internal Coverings

• Think of this as a very wide double layer of poly
• More insulating effect
• Many approaches to this idea
Internal Coverings

Photo credit: Tim Baker
Internal Coverings

Photo credit: Tim Baker
Internal Coverings

Source: Ted Cary, Lewis Jett, et. al.
Energy Curtain

Source: Scott Sanford, University of Wisconsin
Energy Curtain

Source: Gene Giacomelli – University of Arizona
Energy Curtain

Can save 30-50% on heating costs
Multiple-Bay Approaches

Source: Ted Cary, Lewis Jett, et. al.
Multiple-Bay Approaches

Polyethylene Film with IR Additive

- Reduces IR heat loss by 15-20%
- Incremental cost ~ $0.015 / sq. ft.
- Payback ~ 2-3 months / one season
- No light transmittance losses
- Diffuses light – faster, fuller more even crop growth
- Often combined with anti-condensate (AC) coating
- Installation
 - IR film on inside with anti-condensate side down (inside greenhouse)
 - Standard poly film used for outer layer

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT Plastics</td>
<td>Dura-Film 4 Thermal AC</td>
</tr>
<tr>
<td></td>
<td>Dura-Film 4 Thermal AC Plus</td>
</tr>
<tr>
<td>Covalence Plastics</td>
<td>Tufflite Infrared</td>
</tr>
<tr>
<td>Klerk's</td>
<td>K50 IR/AC</td>
</tr>
<tr>
<td></td>
<td>K3 IR/AC</td>
</tr>
<tr>
<td>Green-Tek</td>
<td>Sunsaver</td>
</tr>
<tr>
<td>Ginegar Plastics</td>
<td>Sun Selector AD-IR / Suntherm</td>
</tr>
</tbody>
</table>

Source: Scott Sanford, University of Wisconsin
Techniques to Reduce Temperature

• Shading - reduce energy absorbed
 – Shade curtain
 • Fabric over top of greenhouse/tunnel
 – Shading compound
 • Permanent shade after application
 • Removed Aug – Sept

• Evaporation of water - needs relatively dry air
 – Foggers
 • Requires fine nozzles, high pressure, and clean water
 – Evaporative pads
 • Require mechanical ventilation
 • Approximately 1 gal/min. of evaporating water will cool a 30’x150’ greenhouse 15°F with 1 air change/minute

Source: Greg Brenneman – Iowa State University with modification by Tim Baker
Thermal / Shade Materials

• Non-porous material
 – Highest heat retention
 – Impervious to water and air movement
 • Can fail if water collects on top of curtain

• Semi-porous materials (preferred)
 – Allows moisture to migrate
 – High heat retention – 50 to 75%

• Porous curtains
 – Allows condensate and rain leakage to drain
 – Lower heat retention than nonporous materials – 20 to 30%

• Shade in summer / heat retention
 – Higher shading factor = Higher heat retention

• Curtain life: 8 to 12 years
Curtain Materials: Semi-Porous
Aluminized and clear polyethylene woven fabric
Chinese High Tunnel Structure

- Three thick walls
- A thick roof (top)
- Support structure
- Plastic cover
- Insulation layer at night
Chinese High Tunnel

• It keeps the minimum temperatures at the coldest winter night above 50°F
• Greenhouse effect: Short wave (absorbed light) to long wave (radiated heat)
• Heat stored in soil; thick walls (1-1.5m)
• An insulation layer covers the plastic film at night
• The soil temperatures are relatively high and stable
• In colder regions, some additional heat can be used, but this is normally only done for research and breeding purposes
Chinese High Tunnel

• In-ground wall on three sides with thermal mass for heat storage
• Thermal curtain on roof holds heat in at night

Photo credit: NRCS - Curtis Millsap in his Chinese high tunnel north of Springfield, MO
Stop Infiltration Leaks

• Save 3-10% in heating costs
 – Check roof and wall vents - seal tight
 – Tight cover
 – Glazing / lap seals on glass
 – Fix holes in cover
 – Weather stripping around doors
 – Door sills
 – Roll-up doors – seal for winter?
 – Ventilation louvers close tight
 • Dry lubricant - use graphite or Teflon
 – Cover unneeded fans / vents during winter
 • Foam and plastic
 – Plug gaps around foundation – earth up to sill board
 – Double/single polyethylene over glass
 = 40% savings
Technological Approaches for Saving Energy
Which Fuel Source is the Best?

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Selling Unit</th>
<th>Avg. Efficiency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>KwH</td>
<td>100-280</td>
</tr>
<tr>
<td>Natural gas</td>
<td>CCF (therm)</td>
<td>65</td>
</tr>
<tr>
<td>LP (propane) gas</td>
<td>Gallon</td>
<td>65-80</td>
</tr>
<tr>
<td>Wood</td>
<td>Cord</td>
<td>15-60</td>
</tr>
<tr>
<td>Wood pellets</td>
<td>Ton</td>
<td>80</td>
</tr>
<tr>
<td>Corn (shelled)</td>
<td>Bushel</td>
<td>80</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>Gallon</td>
<td>60</td>
</tr>
<tr>
<td>Kerosene</td>
<td>Gallon</td>
<td>85</td>
</tr>
<tr>
<td>Coal</td>
<td>Ton</td>
<td>60</td>
</tr>
<tr>
<td>Biomass</td>
<td>Ton</td>
<td>40</td>
</tr>
</tbody>
</table>
Standard Heating Unit (SHU)

• One SHU = 100,000 BTUs

• Cost per SHU
 \[\text{Cost per SHU} = \text{Fuel cost} \times \frac{100,000}{(\text{Heat Content} \times \text{Avg.Sys. Eff.})}\]

• LP (propane) gas = $1.56/gal x \frac{100,000}{(91,000 \text{ BTUs} \times 0.65)}
 = $2.64 per SHU

• Electricity = $0.09/KwH x \frac{100,000}{(3413 \text{ BTUs} \times 1.00)}
 = $2.64 per SHU
How They Rank (as of 11/2/2014)

<table>
<thead>
<tr>
<th>Heating System</th>
<th>Fuel Cost</th>
<th>Cost per SHU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-tight stove - dry red oak</td>
<td>$140 / cord</td>
<td>$0.92</td>
</tr>
<tr>
<td>Ground-source heat pump</td>
<td>$0.09 / KwH</td>
<td>$0.94</td>
</tr>
<tr>
<td>Pellet stove - shelled corn</td>
<td>$3.74 / bu.</td>
<td>$1.19</td>
</tr>
<tr>
<td>Pellet stove - wood pellets</td>
<td>$200 / ton</td>
<td>$1.52</td>
</tr>
<tr>
<td>Air-to-air electric heat pump</td>
<td>$0.09 / KwH</td>
<td>$1.60</td>
</tr>
<tr>
<td>Natural gas forced-air furnace</td>
<td>$1.33 / therm</td>
<td>$1.66</td>
</tr>
<tr>
<td>LP gas H.E. forced-air furnace</td>
<td>$1.83 / gallon</td>
<td>$2.51</td>
</tr>
<tr>
<td>Electric resistance heat</td>
<td>$0.09 / KwH</td>
<td>$2.64</td>
</tr>
<tr>
<td>LP gas older forced-air furnace</td>
<td>$1.70 / gallon</td>
<td>$3.09</td>
</tr>
<tr>
<td>Forced-air furnace - #2 fuel oil</td>
<td>$3.33 / gallon</td>
<td>$4.01</td>
</tr>
</tbody>
</table>
Keeping a Good High Tunnel Environment

- Some ventilation is needed for moisture control
- Air circulation within the high tunnel is important
- Ideally, natural ventilation has openings high in the roof
- ALL combustion gases must be vented outside

Photo credit: Tim Baker
Warning on Contaminant Gasses

• Combustion gasses from burning wood, propane, heating oil, natural gas, kerosene, or coal
 – Ethylene, sulfur dioxide, nitrogen oxides, and CO are the most common problems
 – Affects tomatoes, cucumbers, lettuce, melons, peppers, tobacco, some flowers, and bedding plants

• Plant sensitivity depends on:
 – Variety, species, age of plants
 – Light intensity and time of day
 – Humidity, watering and nutrient status
 • High humidity, well-watered plants most at risk
Ethylene Problems

- Ethylene (C₂H₄) is produced from incomplete combustion of fuels
- Incomplete combustion occurs with low oxygen supply to fire and wet wood
- Ethylene causes “2,4-D”-like symptoms
Warning on Contaminant Gasses

- Never use kerosene or fuel oil heaters indoors
- Venting is required!
- Keep wood boilers outdoors
- Inspect furnace and chimney for cracks, leaks & obstructions
- Use dry wood for fuel; avoid large loads of wood with low air supply (dampers closed down)
Supplemental Heating High Tunnels

• In-ground heating
 – Installed before planting, buried 2” deep
 • Electric heating cables
 • Pumped hot water through hoses or pipes
 – Heats soil to set temperature to hopefully extend season

• Above-ground heating
 – Heats air around plants
 – Typically used to protect against cold nights
 – More costly than in-ground
Hot Water Under Plants

- Plastic tents over plant beds on benches
Hot Water Under Plants

• Rigid foam insulation board under pipes

Photo credit: James Quinn
Active Water Heating

- Assure no leaks in boiler door
- Vent flue to outdoors
- Plants close to boiler may suffer

Photo credit: Tim Baker
Active Water Heating
Water for Storing Heat

- Water is one of the best naturally-occurring materials for storing heat
- Thermal mass moderates temperature swings
- Metal or plastic barrels
 - No temperature difference
 - Metal rusts; plastic deforms
 - Plastic may hold more
- Soil will steal heat away if pad not insulated
Passive Solar Greenhouse
Passive Solar Greenhouse

SUMMER
Sun is higher in the sky and casts a shadow over the water-filled tubes and drums of the Botanic Gardens greenhouse helping to keep the greenhouse cool.

WINTER
Sun is lower in the sky shining directly into the Botanic Gardens greenhouse directly illuminating and warming the water-filled tubes and drums. This helps keep the greenhouse warm.
Volunteer watering Plants. Water barrels are part of our passive solar system.
Water-to-Air Heat Exchanger
Water-to-Air Heat Exchanger

Photo credit: Scott Sanford, University of Wisconsin
Water-to-Air Heat Exchanger

Photo credit: Tim Baker
Wood Pellet & Corn Furnace
Circulation fans

- Mix air to prevent stratification of air
- Reduces heating
- Dries wet leaves faster – prevents disease

Paddle fans

Jet blowers

Basket fans
Good Air Circulation is Critical
Good Air Circulation is Critical
Under-Bench Forced Air

- Lowers heating costs 20-25%
- Same as a 5-10°F reduction in greenhouse temperature
- Study of bottom heated tomatoes = 7% increased yields
Under-Bench Hydronic heating
Under-Bench Hydronic Heating

- Natural Convection / Thermal buoyancy
- No pumps

Supply from boiler
Distribution to pipes running under benches
Return piping to boiler
Geothermal Cooling and Heating

- 8”-24” diameter tubes run underground; buried 6’-12’ deep
- Air drawn through tubes by blower
- Ground is cool in summer, therefore cool air comes out
- Hot air drawn in during summer also warms up ground
- In winter, the air is warmed by the soil
Geothermal Cooling and Heating
High Tunnel Resources – Page 1

• High Tunnels.org
 www.hightunnels.org

• Missouri Alternatives Center (click on “H” for high tunnels)
 agebb.missouri.edu/mac/links/index.htm

• Siting High Tunnels (eXtension)
 www.extension.org/pages/18365/siting-high-tunnels

• High Tunnel Construction Considerations (Iowa State)
 www.iowaproduce.org/pages/production/files/high_tunnel/high_tunnel_construction.pdf

• High Tunnel Hoop House Construction Guide (Noble Foundation)

• High Tunnel Fruit and Vegetable Production Manual (Iowa State)
 https://store.extension.iastate.edu/Product/pm2098-pdf
High Tunnel Resources – Page 2

• Passive Solar Greenhouse (University of Missouri)
 aes.missouri.edu/swcenter/research/Solar-heated%20greenhouse.pdf
 bradford.cafnr.org/passive-solar-greenhouse/
 bradford.cafnr.org/greenhouse-materials/

• Plasticulture (Penn State)
 extension.psu.edu/plants/plasticulture

• Horticultural Engineering (Rutgers University)
 aesop.rutgers.edu/~horteng/

• High Tunnel Tomato Production
 extension.missouri.edu/p/m170

• High Tunnel Melon and Watermelon Production
 extension.missouri.edu/p/m173

• Watering and Fertilizing Tomatoes in a High Tunnel
 http://extension.missouri.edu/p/G6462
High Tunnel Resources – Page 3

- AgEnergy Resource website (Univ. of Wisconsin)
 www.uwex.edu/energy/greenhouses.html
- NRAES137 Greenhouses for Homeowners and Gardeners
 extension.missouri.edu/p/nraes137
- Energy Self-Assessment website (NRCS)
 www.ruralenergy.wisc.edu/default.aspx
- National Greenhouse Manufacturers Association
 www.ngma.com
Questions??

Robert A. (Bob) Schultheis
Natural Resource Engineering Specialist
Webster County Extension Center
800 S. Marshall St.
Marshfield, MO 65706
Voice: 417-859-2044
 Fax: 417-468-2086
E-mail: schultheisr@missouri.edu
Web: extension.missouri.edu/webster

Program Complaint Information
To file a program complaint you may contact any of the following:

University of Missouri
 ▪ MU Extension AA/EEO Office
 109 F. Whitten Hall, Columbia, MO 65211
 ▪ MU Human Resources Office
 130 Heinkel Bldg, Columbia, MO 65211

USDA
 ▪ Office of Civil Rights, Director
 Room 326-W, Whitten Building
 14th and Independence Ave., SW
 Washington, DC 20250-9410

"Equal opportunity is and shall be provided to all participants in Extension programs and activities, and for all employees and applicants for employment on the basis of their demonstrated ability and competence without discrimination on the basis of their race, color, religion, sex, sexual orientation, national origin, age, disability, or status as a Vietnam-era veteran. This policy shall not be interpreted in such a manner as to violate the legal rights of religious organizations or military organizations associated with the armed forces of the United States of America."