Grain Drying & Management

Bob Schultheis
Natural Resource Engineering Specialist
University of Missouri Extension

Materials primarily developed by:
Charles Ellis, Natural Resource Engineer
University of Missouri Extension – Lincoln County
Successful Storage

• Proper storage moisture
• Insect control
• Cool the grain
• Grain quality
What Happens When We Dry Grain?

• Heat from the air moving through the grain is used to evaporate moisture from the grain resulting in:
 – Increased water held in the air as vapor
 – Lower air temperatures leaving the grain
Psychrometrics

75 Degrees 75% R. H.

Equilibrium Corn Moisture 15.2%

Heat

85 Degrees 54% R. H.

Equilibrium Corn Moisture 11.4%
Proper Storage Moisture

Corn
- Sold by spring: 15.5%
- Stored one year: 14.0%

Soybeans
- Sold by spring: 13.0%
- Stored one year: 12.0%

Wheat: 13.5%
Storage Time for Corn

<table>
<thead>
<tr>
<th>Grain Temp. °F</th>
<th>15%</th>
<th>16%</th>
<th>18%</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>670</td>
<td>265</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>870</td>
<td>500</td>
<td>200</td>
<td>85</td>
</tr>
<tr>
<td>45</td>
<td>650</td>
<td>385</td>
<td>150</td>
<td>64</td>
</tr>
<tr>
<td>50</td>
<td>490</td>
<td>290</td>
<td>115</td>
<td>48</td>
</tr>
<tr>
<td>55</td>
<td>360</td>
<td>215</td>
<td>86</td>
<td>36</td>
</tr>
<tr>
<td>60</td>
<td>270</td>
<td>165</td>
<td>65</td>
<td>28</td>
</tr>
<tr>
<td>65</td>
<td>200</td>
<td>125</td>
<td>49</td>
<td>21</td>
</tr>
<tr>
<td>70</td>
<td>152</td>
<td>93</td>
<td>37</td>
<td>16</td>
</tr>
<tr>
<td>75</td>
<td>112</td>
<td>70</td>
<td>28</td>
<td>12</td>
</tr>
<tr>
<td>80</td>
<td>84</td>
<td>53</td>
<td>17</td>
<td>9</td>
</tr>
</tbody>
</table>
Storage Time for Beans

<table>
<thead>
<tr>
<th>Grain Temp. °F</th>
<th>14%</th>
<th>16%</th>
<th>18%</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>230</td>
<td>140</td>
<td>75</td>
</tr>
<tr>
<td>45</td>
<td>175</td>
<td>95</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>134</td>
<td>65</td>
<td>23</td>
</tr>
<tr>
<td>55</td>
<td>100</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>60</td>
<td>76</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>65</td>
<td>55</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>70</td>
<td>41</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>75</td>
<td>32</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>80</td>
<td>25</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
Temp. Data for Lamar, MO

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a.m.</td>
</tr>
<tr>
<td>Jan.</td>
<td>43</td>
<td>23</td>
<td>33</td>
<td>78</td>
</tr>
<tr>
<td>Feb.</td>
<td>49</td>
<td>27</td>
<td>38</td>
<td>80</td>
</tr>
<tr>
<td>March</td>
<td>58</td>
<td>34</td>
<td>46</td>
<td>79</td>
</tr>
<tr>
<td>April</td>
<td>69</td>
<td>44</td>
<td>57</td>
<td>79</td>
</tr>
<tr>
<td>May</td>
<td>76</td>
<td>54</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>June</td>
<td>85</td>
<td>63</td>
<td>74</td>
<td>86</td>
</tr>
<tr>
<td>July</td>
<td>90</td>
<td>68</td>
<td>79</td>
<td>87</td>
</tr>
<tr>
<td>Aug.</td>
<td>90</td>
<td>66</td>
<td>78</td>
<td>88</td>
</tr>
<tr>
<td>Sept.</td>
<td>82</td>
<td>57</td>
<td>70</td>
<td>87</td>
</tr>
<tr>
<td>Oct.</td>
<td>71</td>
<td>46</td>
<td>59</td>
<td>82</td>
</tr>
<tr>
<td>Nov.</td>
<td>58</td>
<td>36</td>
<td>47</td>
<td>80</td>
</tr>
<tr>
<td>Dec.</td>
<td>46</td>
<td>26</td>
<td>36</td>
<td>79</td>
</tr>
</tbody>
</table>
Computing Equilibrium Moisture Content

• Need to know:
 - Species of grain (corn, beans, wheat, etc.)
 - Air temperature, °F
 - Air relative humidity, %
 - Current grain moisture, % wet basis
 - Target grain moisture, % wet basis
Equilibrium Moisture of Corn

<table>
<thead>
<tr>
<th>Air Temp. (°F)</th>
<th>Air Relative Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30%</td>
</tr>
<tr>
<td>40</td>
<td>9.3</td>
</tr>
<tr>
<td>50</td>
<td>8.8</td>
</tr>
<tr>
<td>60</td>
<td>8.5</td>
</tr>
<tr>
<td>70</td>
<td>8.1</td>
</tr>
<tr>
<td>80</td>
<td>7.8</td>
</tr>
<tr>
<td>90</td>
<td>7.6</td>
</tr>
<tr>
<td>100</td>
<td>7.3</td>
</tr>
</tbody>
</table>
Recommended Airflow for Drying Corn

<table>
<thead>
<tr>
<th>Min. Airflow, CFM/bu.</th>
<th>Corn harvested on or after</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sep. 1</td>
</tr>
<tr>
<td>Maximum moisture content, %</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>19</td>
</tr>
<tr>
<td>1.25</td>
<td>19</td>
</tr>
<tr>
<td>1.5</td>
<td>19.5</td>
</tr>
<tr>
<td>2.0</td>
<td>20</td>
</tr>
<tr>
<td>3.0</td>
<td>21</td>
</tr>
</tbody>
</table>

Reference: http://extension.missouri.edu/p/G1305
In-Bin Drying

- Cooler Moist Air
- Dry, Warm Air
- Wet Grain
- Drying Zone
- Dry Grain in Equilibrium

UNIVERSITY OF MISSOURI Extension
Fan Operation

During drying, turn on fans and leave them on.
15.5% Corn is:

- 47.3 lbs. of dry matter
- 8.7 lbs. of water
20% Corn is:

• 47.32 lbs. of dry matter
• 11.83 lbs. of water
25% Corn is:

- 47.32 lbs. of dry matter
- 15.77 lbs. of water
Drying 1000 bu. of 20% Corn

25% Corn
47,320 lbs. of dry matter
11,830 lbs. of water

15.5% Corn
47,320 lbs. of dry matter
8640 lbs. of water

3,150 lbs. of water
377 gal.
Drying 1000 bu. of 25% Corn

25% Corn
47,320 lbs. of dry matter
15,770 lbs. of water

15.5% Corn
47,320 lbs. of dry matter
8640 lbs. of water

7,090 lbs. of water
849 gal.

UNIVERSITY OF MISSOURI Extension
Cubic Ft. of Air Required to Dry to 15.5% M.C.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temp. °F</th>
<th>R.H. %</th>
<th>20% M.C.</th>
<th>25% M.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept.</td>
<td>71</td>
<td>68</td>
<td>36,800</td>
<td>68,000</td>
</tr>
<tr>
<td>Oct.</td>
<td>61</td>
<td>65</td>
<td>38,500</td>
<td>70,900</td>
</tr>
<tr>
<td>Nov.</td>
<td>46</td>
<td>68</td>
<td>62,700</td>
<td>103,600</td>
</tr>
<tr>
<td>Dec.</td>
<td>36</td>
<td>72</td>
<td>111,000</td>
<td>154,300</td>
</tr>
</tbody>
</table>
Cubic Ft. of Air Required to Dry to 18% M.C.

<table>
<thead>
<tr>
<th>Month</th>
<th>Temp. °F</th>
<th>R.H. %</th>
<th>20% M.C.</th>
<th>25% M.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept.</td>
<td>71</td>
<td>68</td>
<td>16,000</td>
<td>51,000</td>
</tr>
<tr>
<td>Oct.</td>
<td>61</td>
<td>65</td>
<td>16,800</td>
<td>53,400</td>
</tr>
<tr>
<td>Nov.</td>
<td>46</td>
<td>68</td>
<td>27,900</td>
<td>78,300</td>
</tr>
<tr>
<td>Dec.</td>
<td>36</td>
<td>72</td>
<td>50,000</td>
<td>116,800</td>
</tr>
</tbody>
</table>
Add 20 degrees to Fall Air

October Air
61 Degrees
65% R.H.

Heat Air 20 Degrees

81 Degree Air
33% R.H.

20% to 15%
10,000 CFM
14 bu./hr. dried

20% to 8%
10,000 CFM
217,000 btu/hr.
45 bu./hr. dried
Airflow Through Grain

• When air is forced through grain, it encounters resistance, which is pressure drop
• Pressure drop is the result of friction in the grain mass
Airflow Through Grain Cont.

• Pressure drop is dependent on:
 – Properties of the drying air
 – Airflow rate
 – Characteristics of the grain
 – Amount of void space
 – Broken kernels and fines
 – Grain depth
Selecting Fans & Fan Curves

Comparison of 7.5 hp Axial-Flow Fans

- Butler - 24"
- CECO
- Aerovent - 36"

UNIVERSITY OF MISSOURI Extension
Influence of Grain Type on Airflow

Corn in a 27 foot diameter bin Using a 7.5 hp Butler Axial-Flow Fan
Influence of Bin Diameter on Airflow

Using a 7.5 hp Butler Axial-Flow Fan

Grain Depth in Feet

CFM per bushel

18 ft
24 ft
30 ft
36 ft
Cool Grain in the Fall

- Cool to 35-40°F
- Don’t freeze grain
- Once cooling front starts, cool the entire mass of grain
Warm Grain in the Spring

- Warm grain in spring to 55-65°F to minimize moisture migration
Level Grain

- Peaks will cause lower air movement and complicate drying and management.
Uneven Grain Temperatures in Storage Bin

• More stored grain goes out of condition because temperatures are not controlled than for any other reason.
Uneven Grain Temperatures

• Grain is a poor thermal conductor
 – Corn has an R-value of 1 per inch
 – For an 18 foot diameter bin, the distance from the center to the wall is 108” or an R-value of 108
 – Suggestions for our home walls is R-19!

• The larger the bin, the longer it takes for the center of the grain mass to respond to outdoor temperature changes
Convection Currents

- Center of grain is warm - edges are cool
- Causes moisture migration
The Answer - Aeration

- Aeration is the most effective way to control grain temperature
- Insects - dormant below 50°F - die below 32°F
- Mold growth nearly zero below 40°F
- Aeration also controls moisture content and moisture migration
- Aeration is for temperature control – not drying
 - Try to maintain < 20°F difference between average outdoor temperature and grain temperature
How Cool is Cool Enough?

• For Missouri, grain should be cooled to 35-40°F for winter storage
 – Do not freeze!! This can cause additional problems

• For Missouri, grain should be warmed to 55-65°F for summer storage
 – If the temperature exceeds this, aerate only on cool nights in order to maintain uniform temperatures throughout the bin
Aeration Procedures

• Provide 1 square foot of vent space for each 1000 CFM of air the fan moves
• Airflow direction is not critical
• Type of fan is not critical – will only affect time fan will run
• Change grain temperature in steps
• Do NOT stop fans until the cycle is complete – a cycle is when the front moves all the way through the grain mass
Airflow Direction

Positive pressure – zone moves upward

Negative pressure – zone moves downward
Aerate in Steps

- Aerate when you fill the bin
- Aerate each time there is a 10-15°F change in the average outside temperature
- Do not shut the fan off until the cycle is complete
- 3 cycles is generally adequate for cooling
 - 75°F to 60°F
 - 60°F to 45°F
 - 45°F to 30°F

UNIVERSITY OF MISSOURI Extension
Example of Step Cooling

- **Grain**
- **First cooling cycle**
 - Fan operates 150 hrs.
- **Average daily air temp.**
- **Second cycle**
 - 150 hrs
- **Third cycle**
 - 150 hrs

Example: 1/10 cfm/bu aeration fan

- **September**
- **October**
- **November**
- **December**
Airflow Rates & Cycle Times

• Cycle time depends on the airflow
• Airflow is expressed in CFM/bu
• Airflow rate is a function of
 – Fan design
 – Backpressure
 – Air delivery system
 – Type of grain
 – Depth of grain
• Performance data should be provided with your fan

UNIVERSITY OF MISSOURI Extension
Cycle Times

- Estimating Cycle times
 - Take airflow in CFM/bu from fan data
 - Divide 15 by that number

Example:
Airflow rate of 0.25 CFM/bu

\[
15/0.25 = 60 \text{ hours to cool the grain}
\]
How do you know the cycle is complete?

• The best way to find the cooling front is to measure the temperature at various depths.

• Measure the top layer of grain for a positive pressure system or the exhaust air of a negative pressure system until an abrupt change in the temperature occurs.

• A cooling front pushed only partway through the grain can cause condensation in the cooling zone.
Additional Tips

• Soybeans are hygroscopic
 – Will rapidly absorb moisture from the air
• Close doors and cover bin fans when not in use
• Level the grain – fronts will not push through the cone
• If there is a rapid warm up in the spring, you may need to warm the grain
Other Useful Information & Equilibrium Moisture Content

- Horizon Point through AgEBB
 agebb.missouri.edu/horizonpoint

- is a custom weather analysis system for farmers. It provides farmers with the opportunity to have site specific weather reports sent directly to their e-mail address.
Other Useful Information & Equilibrium Moisture Content

- Part of the Horizon Point report

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 AM</td>
<td>-</td>
<td>23°F 85%</td>
<td>15°C 70%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.4%</td>
<td>18.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.0%</td>
<td>14.3%</td>
</tr>
<tr>
<td>3:00 AM</td>
<td>-</td>
<td>20°F 78%</td>
<td>14°F 70%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.0%</td>
<td>18.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.0%</td>
<td>14.3%</td>
</tr>
<tr>
<td>6:00 AM</td>
<td>-</td>
<td>18°F 68%</td>
<td>13°F 74%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.5%</td>
<td>19.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.8%</td>
<td>15.2%</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>37°F 66%</td>
<td>17°F 67%</td>
<td>19°F 70%</td>
</tr>
<tr>
<td></td>
<td>15.6%</td>
<td>17.4%</td>
<td>17.7%</td>
</tr>
<tr>
<td></td>
<td>12.8%</td>
<td>13.6%</td>
<td>14.1%</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>40°F 59%</td>
<td>21°F 54%</td>
<td>30°F 56%</td>
</tr>
<tr>
<td></td>
<td>14.3%</td>
<td>15.2%</td>
<td>14.7%</td>
</tr>
<tr>
<td></td>
<td>11.4%</td>
<td>11.1%</td>
<td>11.1%</td>
</tr>
<tr>
<td>3:00 PM</td>
<td>41°F 53%</td>
<td>23°F 49%</td>
<td>36°F 43%</td>
</tr>
<tr>
<td></td>
<td>13.5%</td>
<td>14.4%</td>
<td>12.6%</td>
</tr>
<tr>
<td></td>
<td>10.3%</td>
<td>10.2%</td>
<td>8.7%</td>
</tr>
</tbody>
</table>
The “Big Two”

• Grain not checked often enough during storage
• Uneven grain temperatures in storage bin
Corn Flowability

- 28% moisture freezes together
- 24% - 25% some binding
- <24% to assure flow
- Foreign material affects flow

Danger!
Causes of Grain Storage Problems

- Grain too wet
- Grain too warm
- Too much foreign material and fines
- Storage facilities not cleaned before filling
- Grain not checked often enough during storage
- Uneven grain temperatures in storage bin
Grain Too Warm & Too Wet

- The primary agents of grain deterioration are **molds** and **insects**
 - Molds need moist grains
 - Insects need warm grain – 60 - 100°F

- [Granary Weevil](#)
- [Fusarium Grain Mold](#)
Storage Facilities Not Clean

- Clean facilities reduce insect problems
 - Old grain residue is often the source of insect infestation in new crops
 - Can contain insect adults, larvae or eggs
- Sweep or Vacuum floors and walls
- If you have had a prior problem in that bin, consider using an insecticide to pretreat the bin
- Cleaning will have little effect on mold development
Too Much Foreign Material & Fines

- Cracked and broken grain less resistant to mold and insects
- Foreign material often has a higher moisture content and is thus more susceptible to mold
- Largest problem is fines tend to concentrate in one area and have a higher resistance to airflow making them difficult to cool or dry – they can develop into hotspots
Check Grain Regularly

- Run fans
- Smell air
- Check temperatures
- Record temperatures
Grain Not Checked Often Enough

• Grain in storage should be checked
 – Weekly in fall and spring due to rapid temperature changes
 – Every 2-3 weeks in cold weather
 – Every 1-2 weeks in warm weather

• Small problems can quickly turn into large, expensive problems

• Mold and insects grow under similar conditions – producing heat and moisture which can make the situation worse
Checking Your Grain

• SAFETY first!!
 – Keep shields in place
 – Beware of ice/moisture on ladders
 – Install safety cages on ladders
 – Beware of power lines
 – Use a respirator if entering a bin – mold spores can cause lung problems
 – Beware of crusted grain – use a safety harness
 – Follow the “buddy system” if possible
Safety in Grain Handling

• Many accidents occur in handling grain
• Hazards:
 – Suffocation
 – Carbon dioxide
 – Health hazards
 – Hazardous equipment
Suffocation Hazard

- Flowing grain can suffocate you in a matter of seconds
Crusty Grain

- Crusty grain on the surface with a void underneath will cause suffocation
Electrical Lockouts

- Electrical lockouts can prevent someone from turning on an auger while you are inside a bin.
Checking Your Grain

• Check for changes in grain condition
 – Temperature
 – Moisture
 – General condition
• Run fan and smell the exhaust for a musty or sour smell
• Check roof condition – does frost melt off one bin faster than another?
• Look for insects
• Keep records of the conditions – compare them!!
Checking Your Grain Moisture

• Pull multiple samples from various locations and depths –
 – Minimum is one from the center and one from the edge both approx. 3 feet from the surface

• Let samples warm to room temperature in sealed container or Ziploc bag BEFORE measuring
Moisture Meter Error

- Calibrated for 15% corn – error on high moistures
- Adjust for temperature
 - Not accurate <40°F
- Electronic meters more sensitive to outside of kernel
 - Moisture variation after rapid drying
- Meters affected by condensation

Measure moisture content
- Place sample in sealed container for several hours (6-12 hrs)
- Warm to 70°F
- Recheck moisture
Checking Your Grain Temp.

• Check in several locations
• Check at several depths
 – Use a probe with a thermometer attached or pull samples to the surface and measure
 – Record the temperatures
• Allows you to identify
 – Cooling front
 – Heating caused by insect or mold activity
Checking Temperatures

• How??

Can be attached to a 3/8” diameter rod

$20.80 http://www.enasco.com/product/C12108N
Senses only grain near cable
Checking Grain

• How??

Probe as deep as 13-1/2 feet for samples

$159.95 http://www.enasco.com/product/C08661N
Sampling Tips

• Sample once a month when:
 - grain temperature less than 50°F
 - Bins condition stable

• Sample twice a month when:
 - Problems detected
 - Grain mass not stabilized

• Small problems are early indicators
 - Insects
 - Moisture
 - High temperature
 - Smell
 - Temperature differences greater than 10°F
Stored Grain Fungi Management

• **Moisture content** – A moisture content below **13.5 percent** in starchy cereal seeds such as wheat, barley, rice, **corn** and **sorghum**

• below **12.5 percent** in **soybean** prevents invasion by storage fungi regardless of how long the grains are stored

• **Temperature** - In the range of temperature between **40-50 degrees F**, storage fungi grow very slowly

• At **80-90 degrees F**, they grow much more rapidly
Stored Grain Fungi Management

- Broken or cracked kernels are more likely to be contaminated with storage fungi going into storage and more likely to be invaded once they are in storage than sound kernels. Foreign material may restrict air movement through the grain mass leading to temperature and moisture problems which may favor storage mold development.

- At risk is grain already invaded by storage fungi when it arrives at a given storage site—Grain invaded by storage fungi, even if not detected in ordinary inspection, is partly deteriorated and is a much poorer storage risk than grain free of storage fungi and otherwise sound.
Management Practices to Minimize Damage from Stored Grain Fungi

1. Harvest as soon as the moisture content allows for minimum grain damage.
2. Adjust the harvesting equipment for minimum kernel or seed damage and maximum cleaning.
3. Clean all grain harvesting and handling equipment thoroughly before beginning to harvest. Clean bins or storage facilities thoroughly to remove dirt, dust and other foreign material, crop debris, chaff and grain debris.
4. Clean grain going into storage to remove light weight and broken kernels or seeds as well as foreign material and fines.
5. Moisture content is by far the most important factor affecting the growth of fungi in stored grain. After harvest grain should be dried to safe moisture contents as quickly as possible.
6. Aerate grain to safe and equalized temperatures through the grain mass.
7. Protect grain from insect and mite damage.
8. Check stored grain on a regular basis and aerate as needed to maintain low moisture and proper temperature.
9. High moisture corn can be protected from storage molds with propionic acid or other organic acids sold under various trade names. Grain treated with propionic acid can only be used for animal feed only.
Storage Time & Need for Treatment

• If harvested grain (corn, soybeans) will only be stored until May or June the following year, may not need chemical strategies at all (of the listed above)

• Wheat is more susceptible to infestation due the time of year in which it’s harvested and the temp
 – Insect populations are higher
 – Insects are actively reproducing
 – May not need treatment if you plan to store for only 1 month

• All long-term stored grains are at high risk for some level of insect infestation
Insect Identification & Damage

- Insects Attacking Stored Grain
 - Identification is difficult because of small size of the insects
 - Many are similar in appearance
 - Management considerations may vary with the insect
Preventing Insect Infestations

• Sources of infestations
 – Most originate from migration from outside to inside of the bin
 – Most problem insects have many food sources, but a bin full of grain is like going to Ponderosa
 – Other sources of infestations
 • Old grain
 • Spilled grain
 • Feeds, seeds, grain debris
Preventing Insect Infestations

• Many infestations are carried over from bins not cleaned out completely, feed bins, or from grain debris under the bin

• Sanitation
 – ~2 weeks before introducing new grain, clean all old grain from the bin both inside and out
 – Sweep or vacuum, then discard or feed all grain still in wagons, augers, etc.
Safety in Applying Structural & Residual Protectants

- Read all labels and follow instructions
- Use PPE recommended
- Check label for grains that can be treated
- Follow label rates to keep grain salable (within legal tolerances)

UNIVERSITY OF MISSOURI Extension
In Missouri, the Poison Control Center is accessible 24 hours-a-day by calling: 1-800-222-1212
Robert A. (Bob) Schultheis
Natural Resource Engineering Specialist
Webster County Extension Center
800 S. Marshall St.
Marshfield, MO 65706
Voice: 417-859-2044
Fax: 417-468-2086
E-mail: schultheisr@missouri.edu
Web: extension.missouri.edu/webster

Program Complaint Information
To file a program complaint you may contact any of the following:

University of Missouri
- MU Extension AA/EEO Office
 109 F. Whitten Hall, Columbia, MO 65211
- MU Human Resources Office
 130 Heinkel Bldg, Columbia, MO 65211

USDA
- Office of Civil Rights, Director
 Room 326-W, Whitten Building
 14th and Independence Ave., SW
 Washington, DC 20250-9410

"Equal opportunity is and shall be provided to all participants in Extension programs and activities, and for all employees and applicants for employment on the basis of their demonstrated ability and competence without discrimination on the basis of their race, color, religion, sex, sexual orientation, national origin, age, disability, or status as a Vietnam-era veteran. This policy shall not be interpreted in such a manner as to violate the legal rights of religious organizations or military organizations associated with the armed forces of the United States of America."