Maintenance of Vineyard Drip Irrigation Systems

Patrick Byers
Regional Horticulture Specialist
University of Missouri Extension

Outline
- Components of a vineyard trickle irrigation system
- Design considerations
- Maintenance during the growing season
- End-of-season maintenance
- Beginning-of-season maintenance

Components of a Trickle System
- Water Supply
- Pump
- Regulators
 - Backflow prevention
 - Pressure regulator (flowmeter)
 - Air and vacuum release valve
 - Chemical injection system
 - Pressure gauge
 - Filtration system
 - Check valve
 - Interconnections
- Controller
- Distribution lines
 - Mainline
 - Manifold
 - Lateral
- Emitters

Design Considerations
- Water sources, filtration and treatment
- Drainage of the system

Layout of Typical Drip Irrigation System
Source: OSU publ. F-1511
Design Considerations:

Water Source Issues
- Water quality is critical
 - For crop production
 - For proper function of the trickle irrigation system
- Water analysis/quality test of the source prior to installation is CRITICAL
 - All water sources contain contaminants
 - Evaluate filter needs
 - Chemical compatibilities
 - Water reaction in the soil
- Water sources
 - Well
 - Surface source
 - Spring
 - Running water – stream, river
 - Still water – pond, lake
 - Municipal or rural water system
- Consider quantity of water source

Design Considerations:

Water Source Quality
- Well
- Municipal/rural system
- Spring
- Running surface water
- Pond/lake
- Good
- Poor
- If a review of your water source indicates factors that may cause plugging, special care in design and maintenance MUST be practiced

Design Considerations:

Water Quality Analysis
- Inorganic solids = sand, silt
- Organic solids = algae, bacteria, slime
- Dissolved solids
 - Iron & Manganese
 - Sulfates & Chlorides
 - Carbonates
- pH
- Hardness

Design Considerations:

Plugging Potential of Drip Irrigation Systems
<table>
<thead>
<tr>
<th>Factor</th>
<th>Moderate (ppm)*</th>
<th>Severe (ppm)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Suspended solids</td>
<td>50-100</td>
<td>>100</td>
</tr>
<tr>
<td>Chemical pH**</td>
<td>7.0-7.5</td>
<td>>7.5</td>
</tr>
<tr>
<td>Dissolved solids</td>
<td>500-2000</td>
<td>>2000</td>
</tr>
<tr>
<td>Manganese**</td>
<td>0.1-1.5</td>
<td>>1.5</td>
</tr>
<tr>
<td>Iron**</td>
<td>0.1-1.5</td>
<td>>1.5</td>
</tr>
<tr>
<td>Hardness***</td>
<td>150-300</td>
<td>>300</td>
</tr>
<tr>
<td>Hydrogen sulfide**</td>
<td>0.5-2.0</td>
<td>>2.0</td>
</tr>
<tr>
<td>Biological</td>
<td>10,000-50,000</td>
<td>>50,000</td>
</tr>
</tbody>
</table>

* ppm = mg/L ** pH is unitless *** Hardness: ppm = gpg x 17

Design Considerations:

Surface Water Quality Issues
- Pond design – to minimize sediment
- Grassed buffer strips
- Settling basins
- Screened intake 1-2 feet below pond surface
- Treatment of pond water with 1 ppm copper sulfate (2.7 lb / acre foot of water) to prevent algae formation and control bacterial slime
Design Considerations:
Surface Water Quality Issues

Design Considerations:
Water Source and Filters
- Municipal Water System - Screen Filter or Disk Filter.
- Well - Screen Filter or Disk Filter.
- River or Creek - Media Filter and Screen Filter.
- Pond or Lake - Media Filter and Screen Filter.
- Spring or Artesian Well - Screen Filter or Disk Filter.
- Organic material in water - Media Filter and Screen Filter
- Sand in water - Screen Filter or Disk Filter.

Design Considerations:
Drainage of the System
- If possible, design system to allow for gravity drainage
- Bury supply lines and manifolds below the frost line
- Include drains whenever possible
 - Upstream and downstream of each control valve
 - At each low point in the system
 - Allow for air entry at high points in the system
 - Make sure that drains are accessible
 - Make sure that water from drains has somewhere to go!
- Include a port for compressed air – install downstream of backflow prevention and pressure regulators/vacuum breaks

Growing Season Maintenance
- Water supply
- Flush physical contaminants
 - Cleaning the filter
 - Flushing the system
- Check for excessive leakage
- Repair breaks or lost emitters
- Fertilizer injection

Growing Season Maintenance:
Troubleshooting Guide
<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>Suspended clay and silt</td>
</tr>
<tr>
<td>White precipitate</td>
<td>Carbonate precipitation</td>
</tr>
<tr>
<td>Reddish precipitate</td>
<td>Iron precipitation</td>
</tr>
<tr>
<td>Black sandy particles</td>
<td>Iron sulfide precipitation</td>
</tr>
<tr>
<td>Black precipitate</td>
<td>Manganese precipitation</td>
</tr>
<tr>
<td>Reddish brown slime near emitters</td>
<td>Bacteria feeding on iron</td>
</tr>
<tr>
<td>White stringy masses of slime near emitters</td>
<td>Bacteria feeding on sulfur</td>
</tr>
<tr>
<td>Green or slimy matter in surface water</td>
<td>Algae or fungi</td>
</tr>
</tbody>
</table>

Growing Season Maintenance:
Water Supply
- Water supply
- Clean up surface sources
- Measure water level drop in wells during season
- Chemical water treatment
Growing Season Maintenance: Chemical Water Treatment

- **Useful to manage both inorganic and organic problems**
- **Goals of chemical treatment**
 - Cause some particles to settle out or precipitate
 - Cause some particles to remain soluble or to dissolve
- **Place filtration after chemical treatment**
- **Backflow prevention is important**

Chemical Water Treatment

- **Chlorine**
 - Kills microbial activity (algae, bacteria)
 - Decomposes organic materials
 - Oxidizes soluble minerals, causing them to precipitate out of solution

- **Acid treatment**
 - Lows water pH
 - Maintains solubility or dissolves manganese, iron, and calcium precipitates
 - Potassium permanganate
 - Oxidizes iron, causing it to precipitate

- **Calcium salts (carbonates, phosphatics)**
 - Water pH > 7.5, bicarbonate levels > 100ppm
 - Acid injection
 - Target pH 4.0 or lower for 30 to 60 minutes daily
 - Hydrochloric, phosphoric, or sulfuric acid used
 - Flush and clean injector

- **Bacteria and algae**
 - Chlorine concentration of 10-20 ppm for 30-60 minutes daily
 - Work by sections through the system, flushing out lines after treatment
 - If emitters are plugged, higher concentrations of chlorine may be needed to decompose organic matter

- **Iron over 0.1 ppm**
 - Aeration and settling
 - Chlorine precipitation
 - Concentration of Cl depends on the concentration of Fe - 3.7 ppm per 1.0 ppm Fe
 - pH control
 - Low pH (2.0) - iron dissolves
 - High pH - iron precipitates
 - Potassium permanganate
 - Combinations – more than 10 ppm Fe or organically complexed iron

- **Goals of chemical treatment**
 - Cause some particles to settle out or precipitate
 - Cause some particles to remain soluble or to dissolve
 - Place filtration after chemical treatment
 - Backflow prevention is important
Growing Season Maintenance: Chemical Water Treatment
- Acid injection rate calculation
- Amount of acid needed to treat a system
 - Strength of acid used
 - Buffering capacity of the irrigation water
 - Desired pH of water
- Perform a titration to arrive at the acid volume:water volume ratio
- Calibration of injection pumps is critical

Growing Season Maintenance: Fertigation
- Drip irrigation can supply soluble materials such as fertilizers by chemigation
- Analyze water source for precipitate potential through water/fertilizer interactions
- Test fertilizers for solubility, especially P sources
- Backflow prevention is critical
- Use proper equipment and procedures
 - Inject upstream of filters
 - Allow for complete mixing
 - Pressurize system before injection
 - Flush lines at the end of injection to remove residue

Growing Season Maintenance: Control Area
- Control area
 - Regularly check each component for proper function as per manufacturer’s guidelines
 - Remember – pressure gauges are your indicators!

Growing Season Maintenance: Filters
- Filter
 - Filters must be cleaned when pressure loss across filter exceeds 5-10 psi
 - Screen filter - manual or automatic flush
 - Disc filter – flush
 - Sand media - backflush to clean

Growing Season Maintenance: Supply Lines and Laterals
- Flush lines at intervals
- Repair breaks and areas of leakage – inspect weekly

Growing Season Maintenance: Emitters
- Emitters
 - Check frequently for plugging
 - Check for lost emitters
 - Control weed growth under trellis
 - Weeds compete for water
 - Weeds compete for injected fertilizers
 - Weeds interfere with wetting patterns
 - Weeds make maintenance more difficult
Growing Season Maintenance: Emitters

- Emitters
 - Root intrusion
 - CI injection at 100ppm for 1 hour
 - Injection of trifluralin or copper sulfate
 - Soil ingestion
 - Install vacuum relief valves on submains and manifolds, especially at high points
 - Soil surface installations – place emitter orifices up

Beginning of Season Maintenance

- Check controls
- Flush and clean filters
- Flush the system
- Leak check the system; check emitters and wetting patterns

Beginning of Season Maintenance: Check Controls

- Place controls in system if removed
- Check each component for proper function as per manufacturer’s guidelines

Beginning of Season Maintenance: Flush the System

- Place controls in system
- Flush mainline for 20 minutes, with manifold valves closed
- Flush each manifold for 5-10 minutes
- Open ends of each lateral in a zone
- Flush laterals in each zone until water runs clear

Beginning of Season Maintenance: Flush and Clean Filters

- Make sure that filters are clean
- Replace cartridges or media if needed

Layout of Drip Irrigation System
Beginning of Season Maintenance:
Leak Check the System
- Close lateral ends
- Run system with water for 20 min to remove air
- Check pressure throughout the system – note any areas with more than 20% variation in flow rate, and correct
- Walk vineyard, noting plugged emitters, leaks and breaks; repair any problems

End of Season Maintenance
- Turn off the water source
- Winterize the control area
- Drain all lines
 - Open manual drains
 - Remove plugs at ends of laterals
 - Use compressed air to remove water if needed
 - Replace end coverings and close drains

End of Season Maintenance:
Turn Off the Water Source
- The main shut off valve must be freeze proof!
 - Below frost line
 - In heated room
 - Insulated

End of Season Maintenance:
Winterize the Control Area
- Disconnect power if needed
- Remove controls (backflow prevention, filters, gauges, injection equipment)
- Drain water from everything!
- Consider storing controls in a heated protected area

End of Season Maintenance:
Drain All Lines
- Two methods
 - Drain valves
 - Blowing out the system
- Drain valves
 - Open all drain valves, allow water to drain
 - Remember to leave all valves open!
Any Questions?

Patrick Byers
MU Extension - Greene County
417-881-8909
ByersPL@Missouri.edu