Des Moines Tearing Down Ash Trees To Combat Borer

April 29, 2015, by Aaron Brilbeck – WHO-TV

The landscape of Des Moines is changing. Beautiful old shade trees, reduced to ugly stumps. At Evelyn Davis Park, several trees were cut down this week. And thousands more will follow.

“It’s gonna look sad,” neighbor Cindy Mendias said. “The park is gonna look empty now.”

The reason: The tiny but very destructive Emerald Ash Borer. They were found in Waukee and it’s just a matter of time before they turn up in Des Moines. Once a tree is affected, it will die within two to three years. So the city is taking steps now to remove ash trees.

“That’s actually a cooperative effort with MidAmerican Energy,” Des Moines Engineer Jonathan Gano said. “They’re doing their line clearance and they find an ash tree that’s to be removed rather than just doing their bare minimum of line trimming, they’re actually doing what you might call a very very hard prune and cutting it back to just stump.”

The city will eventually remove the stumps and, when possible, replace the ash trees with other trees. “Where we can put a tree we’ll put back a tree particularly where we have an adjoining property owner who is interested in having one there,” Gano said.

This year the city plans to remove four thousand trees, but Gano said that’s just a small amount compared to the number that will have to be destroyed.

“[An] estimated number is around 34,000 ash trees just on public property. There’s probably another 100,000 on private property.” Gano said.

If you have an ash tree on your property, Gano said, “Your options are to treat it or remove it. [If] that tree is going to be infested with the insect in the nearer term future than we would all like and the best time to deal with it is while it’s still relatively healthy because it will only get more expensive to remove that tree later on.”

The city says treating the trees will just prolong the inevitable. All ash trees in the City of Des Moines, sooner or later, will have to come down.

“It’s gonna look so sad now.” Mendias said, looking at the stumps, “So empty. And there’s so many of them. It’s gonna look sad.”

Image: James Zablotny, Ph.D.
2015 EAB National Survey Guidelines now available on the APHIS web site

Anyone involved with the USDA APHIS 2015 Emerald Ash Borer National Survey is asked to download and review the guidelines and accompanying documents. The following links will take you to the field survey documents on the APHIS web site.

2015 EAB National Survey Guidelines

2015 Trapping Protocols

2015 Trapping Materials List

Other documents associated with the 2015 EAB National Survey can be found on the APHIS Emerald Ash Borer web page under the Pest Management section at the following link:

2015 EAB National Survey Documents
From the editor:

The EAB Program has received several inquiries regarding alternative methods for detecting or delimiting emerald ash borer in various landscapes outside of our Federally funded National survey. The technique used in any given situation is predicated on one’s available resources related to funding, equipment, personnel, etc. With this understanding, the EAB Report will feature and provide links to scientific literature in support of EAB Program objectives. Links for literature supporting branch sampling follow as well as a link to a FHTET sample design tool.

Canadian Forest Service - Sault Ste. Marie

Detection of emerald ash borer in urban environments using branch sampling

K.L. Ryall, J.G. Fidgen, J.J. Turgeon

Forest Health Technology Enterprise Team (FHTET)

Invasive Species Sample Design Tool

The FHTET Invasive Species Sample Design Tool prioritizes the selection of sample locations for detection and survey activities based on pest risk. In addition, the tool generates spatially balanced sample locations, which improves sampling efficiency by maximizing the spatial independence of sample points, thereby providing the most information available per sample unit. Benefits of the tool are that users may dynamically set the geographic area of interest and specify the number of sample locations to be selected. To create the sample points, the tool requires two inputs, 1) an inclusion probability raster (e.g. a risk based surface), and 2) the number of output sample locations specified by the user. To download the tool go to the Forest Service, Forest Health Technology Enterprise Team website with the following link:

http://www.fs.fed.us/foresthealth/technology/invasives_sample_design_tool.shtml
The maps following this thematic map provide a finer scale view of regulated areas and detections of EAB. This native and potential urban range map of ash provides another observation of those features from a coarser scale.

EAB Quarantine Map

Note: Federal EAB contiguous quarantine change became effective July 1st, 2012.

More information on this quarantine change can be found at:

EAB Detection and Quarantine Map

This map depicts the initial EAB detection in each county and replaces the map showing all known EAB detections. All detections are still tracked and recorded by the EAB Program but for illustrative purposes this map provides a clearer view of EAB’s known distribution in the United States and Canada.

2015 EAB New County Detections Map

This map displays the initial detections of EAB by county. All new county detections occurring prior to 2015 are filled yellow while new county detections for 2015 are filled red.

2014 EAB New County Detections Map

2013 EAB New County Detections Map

2012 EAB New County Detections Map
Recent Literature:

Previously Listed Literature:

Previously Listed Literature (continued):

Range expansion of *Agrilus convexicollis* in European Russia expedited by the invasion of
the emerald ash borer, *Agrilus planipennis* (Coleoptera: Buprestidae). Orlova-Bienkowskaja, M.J.

Patterns of parasitoid host utilization and development across a range of temperatures:
implications for biological control of an invasive forest pest. Duan, J.J., D.E. Jennings, D.C. Williams,

Detecting emerald ash borers (*Agrilus planipennis*) using branch traps baited with 3D-
printed beetle decoys. Domingue, M.J., D. P. Pulisifer, A. Lakhtakia, J. Berkebile, K.C. Steiner, J.P. Lelito, L.P. Hall,

Concise synthesis of (3 Z)-dodecen-12-olide, pheromone component of the emerald ash borer.

Heat treatment of firewood for emerald ash borer (*Agrilus planipennis Fairmaire*): Case

Motivations for rule compliance in support of forest health: Replication and extension.

Submersion as a tactic to prevent emergence of emerald ash borer *Agrilus planipennis* from

Effects of water availability on emerald ash borer larval performance and phloem phenolics

The mating and oviposition behavior of the invasive emerald ash borer (*Agrilus
planipennis*), with reference to the influence of host tree condition. Jennings, D.E., P.B. Taylor, and

Genetic structure of green ash (*Fraxinus pennsylvanica*): implications for the establishment
of ex situ conservation protocols in light of the invasion of the emerald ash borer. Hausman,

Unexpected connections between residential urban forest diversity and vulnerability to two

Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood
tree species *Fraxinus profunda*. Stevens, M.E. and P.M. Pijut. 2014. Plant Cell Reports, DOI: 10.1007/s00299-
014-1562-2.

Native bark-foraging birds preferentially forage in infected ash (*Fraxinus spp.*) and prove
effective predators of the invasive emerald ash borer (*Agrilus planipennis Fairmaire*).

A bioeconomic analysis of an emerald ash borer invasion of an urban forest with multiple
36: 270-289.

Emerald ash borer invasion of North America: History, biology, ecology, impacts, and

Induction of green ash embryogenic cultures with potential for scalable somatic embryo
production using suspension culture. Li, D., J. Zhang, and S.A. Merkle. 2014. Trees—Structure and Function,
28: 253-262.

Divergence of the potential invasion range of emerald ash borer and its host distribution in
North America under climate change. Liang, L. and S. Fei. 2013. Climate Change, DOI: 10.1007/s10584-013-
1024-9.
Also in the Press:

Protecting against Emerald Ash Borer infestation
Beatrice Daily Sun
An invasive insect pest continues to move closer and closer to Nebraska: the Emerald Ash Borer. Emerald Ash Borer, EAB, has not been found in ...

Emerald ash borer found south of Sturgeon Bay
Green Bay Press Gazette
Nasewaupee Town Chairman Steve Sullivan said the Wisconsin Department of Natural Resources notified him this week that the emerald ash borer ...

Dinniman: West Chester a model in beetle battle
The Times of Chester County
The emerald ash borer is a half-inch long metallic green beetle that is wreaking havoc on ash trees in towns, parks and forests across the nation.

Beetle battle: Costly fight against ash borer bug in Kitchener, Waterloo and Cambridge
Waterloo Record
The emerald ash borer's devastating impact on local ash trees has prompted a Grand River Conservation Authority decision to cut down 9,000 trees ...

Crews find EAB near downtown Middleton
Channel3000.com - WISC-TV3
Emerald ash borer was identified and confirmed Tuesday on Hubbard Avenue in Middleton, according to a release.

Emerald ash borer confirmed in Green County
WMSN Fox 47 Madison
WMSN Fox 47 provides local news, weather forecasts, traffic updates, notices of events and items of interest in the community, sports and ...

Emerald ash borer found in Rushford
Bluff Country Newspaper Group
Suspected EAB larva and feeding activity consistent with emerald ash borer was found in a boulevard ash tree in the city. The infested tree was found ...

Emerald Ash Borer has on-going impact on ash trees in Greater Cincinnati
WLWT Cincinnati
CINCINNATI — The Emerald Ash Borer arrived in the region in 2006 and in the city of Cincinnati in 2007. In that time it has killed millions of ash trees ...

Chagrin Valley on emerald ash borer "front lines" as cities take down trees
cleveland.com
D-shaped holes in the trunks of ash trees -- like those seen here -- are the entry points for the larvae of emerald ash borer beetles, which eat the inner ...

Emerald ash borer detected in an 8th Minnesota county
Minneapolis Star Tribune
The spread of the destructive emerald ash borer marches on, with the southeast toe of the state identified as the victim of an infestation. Fillmore ...
Illinois:
Illinois Department of Agriculture
Staff activities – During the reporting period, field staff visually inspected 20 trees for EAB presence with none determined as positive for EAB. Staff activities focused on the placement of purple “sticky” traps in southern Illinois, placing 104 traps during the week (413 traps deployed year to date – 82.6% of total to be deployed). A map depicting trap deployment progress can be found on the next page (placed traps as purple triangles, previously EAB positive detections as red stars, and the internal state quarantine boundary as a red line).

www.IllinoisEAB.com activity – Visits to the Emerald Ash Borer page on the Department’s website totaled 705 during the reporting period.

EAB quarantine compliance agreements – The Department issued 3 new compliance agreements during the reporting period. The total number of current EAB compliance agreements is now 1,739.

State Firewood Importer Certification – During the reporting period, the Department issued one firewood importer certificate for the 2015 calendar year. The total number of certificates issued for the 2015 calendar year is 32.

Previous year’s total are as follows:
Illinois (continued):
Montana:
Over 60 cities in Montana celebrated Arbor Day, April 25th, with various festivities. PPQ in Montana captured some of those events in the following links:

http://www.kpax.com/story/28898475/flathead-students-giving-back-to-mother-nature
Credits and Contact Info

Contributors:
Gary Adams, SPHD, MT USDA APHIS PPQ
Doug Bopp, Geographer, USDA APHIS PPQ
Jim Buck, EAB Program Analyst, USDA APHIS PPQ
Jeff Coath, SPPQO, IL USDA APHIS PPQ
Shayne Galford, PHSS, MT USDA APHIS PPQ

Please direct all inquiries regarding the USDA APHIS PPQ EAB Program or this report to:
Paul Chaloux, USDA APHIS PPQ
National Policy Manager
Emerald Ash Borer Program
Riverdale, Maryland
301-851-2064
Paul.Chaloux@aphis.usda.gov

Joe Beckwith, USDA APHIS PPQ
National Operations Manager
Emerald Ash Borer Program
Raleigh, North Carolina
919-855-7345
Joseph.Beckwith@aphis.usda.gov

Sharon Lucik USDA APHIS PPQ
SME— EAB Outreach
Emerald Ash Borer Program
Brighton, Michigan
810-844-2713
Sharon.E.Lucik@aphis.usda.gov

Questions about EAB Biocontrol?
There’s a new Q & A document on the APHIS website.
Check it out, here’s the link: