Soil Fertility in Cotton Production

Dr. Wes Mueller
Soil Health, an Integrated Approach

• More than just applying fertilizer

• Includes:
 • Setting realistic yield goals
 • pH of the soil
 • When to apply fertilizer?
 • What fertilizer to apply?
Soil Health, an Integrated Approach

• (List continued):
 • Managing nutrient loss
 • Compaction
 • Root penetration
 • Water infiltration and drainage
Setting Realistic Yield Goals

• Base your goals on field history

• Too little:
 • Reduced yields
 • Unrealized economic potential

Justus von Liebig (1803-1873)
Setting Realistic Yield Goals

• Base your goals on field history

• Too much:
 • Excess nitrogen - excess vegetative growth, lower yield
 • Other nutrients may be wasted
Soil pH

• Ideal is 6.0 to 6.5
• Cotton does quite well between 5.8 and 8.0
• Liming the soil helps to lower pH
 • Follow soil-test recommendations
• Remember, nutrient availability is pH dependent
Soil pH

- Ideal is 6.0 to 6.5
- Liming the soil helps to lower pH
- Follow soil test recommendations
- Remember, nutrient availability is pH dependent
Soil pH

• If the ideal pH is not possible, then what?
 • Foliar applications may work
 • Dictated by economics!
When to Apply Fertilizer

• Ideal: apply when the plant needs it
• Usually not possible
• Depends on irrigation system
• Mobility of the nutrient in the soil
When to Apply Fertilizer?

• Nitrogen (N)
 • Soil test gives a good estimate of available N
 • Soil testing recommended every 3 years
 • If the field has a history of inadequate or excess vegetative growth, change N applications accordingly
 • Peak demand at fourth week of flowering
 • Need 40 lb. N per bale of yield
When to Apply Fertilizer?

• Nitrogen (cont.)
 • Applications over 100 lb. N:
 • Boron is often needed
 • Insects are a bigger problem
 • Excess Vegetative growth
 • At the end of the season you want the plant starved of N
When to Apply Fertilizer?

- Nitrogen (cont.)
 - Apply 1/3 N at time of planting
 - Ideal: banded 2-4in. below and to the side of the seed
 - Apply 1/3 at first square
 - Apply 1/3 at first bloom
 - Apply less when following legume crops
When to Apply Fertilizer?

• Nitrogen (cont.)
 • Too much N causes problems:
 • Delayed maturity
 • Defoliation problems (late season)
 • Regrowth after defoliation
 • Damaged fiber quality
 • Reduced yields
 • Excessive vegetative growth
 • More pest damage
 • Delayed maturity
 • Delayed boll opening
Phosphorus (P)

- Immobile in the soil, so apply all at time of planting
- Important nutrient for seedling growth
- Sandy soils may need supplemental P foliar application for high yield
- Cotton takes up P slowly in cold soils (solubility, slow root growth & slow mycorrhizae growth)
Potassium (K)

• Fairly mobile in the soil so split application
• Peak demand 4th week of bloom
• Can apply ½ at planting and ½ side dress
• Sandy soils may need supplemental P foliar application for high yield
Other Nutrients

• Calcium (Ca) and magnesium can be supplied by liming

• Sulfur (S) requirements are difficult to assess. Low OM or sandy soils may need S

• Boron (B) is especially important with high N applications (100lb./A+)
Other Nutrients

• Sulfur
 • In the past S was not an issue because we burned high-sulfur coal
 • Farmers depended on rain dissolving it from the air (30+ lb/A)
 • Clean air act of 1970 reduced S emissions. Now below 20lb/A)
 • Another source of sulfur is decaying OM
 • Low OM soils tend to be low in S
 • Sandy soils are often low in OM
Other Nutrients

• Boron (B) can be applied to the soil or foliar
 • Higher rates required for soil applications (1-2 lb/A)
 • 0.1 lb/A applied weekly during early bloom (3 to 5 times)
 • B is not mobile in the plant, hence multiple applications
 • Rates of 0.5 or more burns the leaves
 • Compatible with many insecticides
 • B is more difficult to manage when:
 • Low organic matter (OM)
 • Excess lime
 • Sandy soil
Other Nutrients

- **Boron**

![Nutrient Graph](image.png)
Petiole Analysis (Blade Analysis)

• Most accurate way of monitoring nutrient levels during the season
• Petiole analysis done on the top-most fully expanded leaf (4 leaves below the expanding leaf that is 1” across)
Managing Nutrient Loss

• Split applications of mobile nutrients
• Add urease inhibitors (Agrotain®) with urea
 • Almost doubles N utilization from urea
• Do not apply fertilizer when soil is wet
 • Runoff, leaching, denitrification
• Consider owning your own application equipment
 • More control over timing of applications
Compaction Effects

• Reduced air/water space in soil
• Water infiltration rates are reduced
• Increased soil erosion
• Poor root development
 • Affects water and nutrient uptake
• Denitrification of nitrates (anaerobic conditions)
Reduce Compaction

• No operations on wet fields (tillage, spray, fertilize, etc.)
• Reduce # of operations
• Drive the same rows for each operation
Take-home lessons

• Do not apply too little fertilizer
• Do not apply too much fertilizer
• Timing is important
• It is more than just NPK
• IT IS ALL ABOUT ECONOMICS!
References

Albers, DW. 1993. Fertility management of cotton. Univ. of Mo. Extension
http://extension.missouri.edu/p/G4256

Kissel, DE, G Harris. University of Georgia Field Crop Sheets.

http://extension.missouri.edu/p/G4257

Integrated crop management: Soil fertility. National Cotton Council
https://www.cotton.org/tech/ace/soil-fertility.cfm