Cover Crops
What we have learned on claypan soils

Mike Plumer
Field without a cover crop – severe erosion
After a 5” rain storm– little erosion and clean water
Notice lack of soil movement
Stand of annual ryegrass in November
Reasons to Use Grass Cover Crops

- Improved soil tilth
- Increase Organic Matter
- Increase soil biological activity
- Improve soil structure
- Increase soil moisture holding capacity
- Capture nitrogen
- Cycle nutrients
- Control soil erosion and protect water quality
Cover crop effects

wheat/buckwheat/hairy vetch on 90 yr old fertility plot

<table>
<thead>
<tr>
<th>Plot</th>
<th>Corn yield bu/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>150N conventional</td>
<td>117.0</td>
</tr>
<tr>
<td>No-till</td>
<td></td>
</tr>
<tr>
<td>No lime(pH5.1)</td>
<td></td>
</tr>
<tr>
<td>Lime(pH6.7)</td>
<td></td>
</tr>
<tr>
<td>0-0-0</td>
<td>3.6</td>
</tr>
<tr>
<td>0-P-0</td>
<td>60.0</td>
</tr>
<tr>
<td>0-0-K</td>
<td>24.3</td>
</tr>
<tr>
<td>0-P-K</td>
<td>50</td>
</tr>
</tbody>
</table>

Plumer, U of IL
Tracing corn root development
With annual ryegrass cover crop
To preserve plot integrity we have gone to a 3” soil Probe we built.
Soil probe sample we are tracing the ryegrass roots
Soybean root following previous root channel
Soybean root following previous root channel
6 years cover crops and no-till corn root development
Disk and field cultivate 6 years no-till plus cover crop of ryegrass in fragipan soil
Soybean root development under ryegrass cover in August
Soybean root development under ryegrass to over 25”
Rooting systems

- Oil seed radish: macro pores, 4-16”
- Rape: 10-15”
- Oats: fibrous, 8-15”
- Hairy vetch: fibrous, 12-15”
- Annual ryegrass: fibrous, 28-60”
- Cereal rye: fibrous 18-24”
- Austrian winter pea: variable, 8-14”
- Wheat: fibrous, 10-16”
- Triticale: fibrous, 10-20”
- Turnips: macro pores, 4-8”
Living winter cover

• Increases soil biological activity
• Move nutrients from subsoil
• Make nutrients more available
• Improve crop production
10 years grass CRP no-till vs continuous no-tilled field

No-tilled into CRP sod

Farmed those 10 years

1st yr. No-till

Estimated Volume (Dry) (bu/ac)

- 59.56 - 70.00 (8.12 ac)
- 56.50 - 59.56 (9.94 ac)
- 53.66 - 56.50 (10.36 ac)
- 50.62 - 53.66 (10.80 ac)
- 47.99 - 50.62 (11.34 ac)
- 45.66 - 47.99 (11.90 ac)
- 5.06 - 45.66 (10.96 ac)

Soybean yield
Soil Tests in ryegrass Cover Crop

No fertility added
4 years, 3 reps
C-S rotation

Plumer, U of IL
TERRY N. TAYLOR FARM - 38 different fields

CORN YIELDS on Cisne claypan soils

<table>
<thead>
<tr>
<th>Rank</th>
<th>Field</th>
<th>Cover</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THEO 4</td>
<td>Vetch</td>
<td>204</td>
</tr>
<tr>
<td>2</td>
<td>SIMP 13</td>
<td>Ryegrass</td>
<td>194</td>
</tr>
<tr>
<td>3</td>
<td>HOLL 4</td>
<td>Vetch</td>
<td>188</td>
</tr>
<tr>
<td>4</td>
<td>SMITH 4</td>
<td>Ryegrass</td>
<td>183</td>
</tr>
<tr>
<td>5-17</td>
<td></td>
<td>Ryegrass</td>
<td>178</td>
</tr>
<tr>
<td>18</td>
<td>THEO 3</td>
<td>None</td>
<td>164</td>
</tr>
<tr>
<td>36</td>
<td>WEAVR 8</td>
<td>Ryegrass</td>
<td>110</td>
</tr>
<tr>
<td>38</td>
<td>WEAVR 9</td>
<td>Ryegrass</td>
<td>104</td>
</tr>
</tbody>
</table>
Cover Crop
Picking up excess nitrogen from
Anhydrous tracks after corn

Plant has been shown to uptake 800#/a of nitrogen after manure application
Nitrogen Uptake

- Continuous no-till
- Corn after Corn
- 200#N/a = 215 bu/A
- 3642#/A. annual ryegrass Jan. 6
- 2” of water applied, leached
 84#/a of Nitrogen from ryegrass
Nitrogen availability

• Depends on cover crop stage of growth
 – Vegetative grass stage yields most available
• Leachable from top growth
• Residue must decompose to recover all nutrients—especially if mature
Nitrogen and cover crop maturity

At this stage of maturity no nitrogen is available and may cause nitrogen deficiency
COVER CROPS

• PLAN EARLY

• PLANT EARLY
 – Good seed to soil contact
 – Plant into the soil ¼ to ½ “ deep
 – Leave residue cover to hold moisture for germination
 – Aerial seeding must be timed properly
 • Corn- 50% sun on ground or yellowed/browning
 • Soybeans- leaves yellow and falling
Drilling produces the best stand, the quickest
Cover Crop
Spring Burndown Management

• Plan on date/growth stage to kill
 – Smaller easier to kill, less mulch
 – Later, concerns over wet soils, dry soils, getting a crop stand

• Match herbicides to cover crop

• Plan on 2 herbicide applications

• Know your planters limitations
Glyphosate Issues in Spring

• Glyphosate only works when plant is actively growing
 – Need sunny days
 – Above 50 degree temperature
 – Cold weather means morning only spraying
 – NO triazines in mix

• Use additives
 – AMS or other like products
 – 10 gallons water/ acre
Evaluate herbicides and herbicide timing
Not all herbicides work well to kill cover crops in cool weather. 576 plots tell the story.
Selecting the right herbicide provides excellent control
Annual Ryegrass Herbicide Trial

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>gly51 22oz</td>
<td>9.7</td>
</tr>
<tr>
<td>gly 51 32oz + 2,4-D</td>
<td>10</td>
</tr>
<tr>
<td>gly 51 32oz + calisto 7oz</td>
<td>6.3</td>
</tr>
<tr>
<td>gly51 32oz + Prowl H2O 3 pt</td>
<td>10</td>
</tr>
<tr>
<td>gly51 32oz + resolve 2 oz.</td>
<td>10</td>
</tr>
<tr>
<td>gly51 32 oz + Basis 1 oz</td>
<td>10</td>
</tr>
<tr>
<td>gly51 32oz + Balance Pro 4oz</td>
<td>10</td>
</tr>
<tr>
<td>gly 51 32 oz</td>
<td>10</td>
</tr>
</tbody>
</table>

LSD 0.05 0.6

Sprayed at 1st to 2nd joint stage, mid April

Control at 36 das

Plumer, U of Il.
Soybean Cyst Nematodes

Egg Count

<table>
<thead>
<tr>
<th>Location</th>
<th>Bare</th>
<th>Cereal Rye</th>
<th>Annual Ryegrass</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>7533</td>
<td>717*</td>
<td>117**</td>
</tr>
<tr>
<td>SW</td>
<td>3650</td>
<td>320*</td>
<td>0**</td>
</tr>
<tr>
<td>LF</td>
<td>1559</td>
<td>722*</td>
<td>386*</td>
</tr>
<tr>
<td>JA</td>
<td>1202</td>
<td>390*</td>
<td>279*</td>
</tr>
</tbody>
</table>

Additional research needed

May result in 8-10 bu/ac yield increase if high cyst populations

* Significant .05
** Significant .01

2 years /3 replications
Yield advantage

2007 3” rain-April-Oct.
Claypan soil

- conventional
- no-till
- conv 06/notill07
- notill + ryegrass cover

9 replications 2006
8 replications 2007

Plumer U of Il.
Questions?
Organic Matter

• Can supply up to: (3%som)
 – 25-100 # N/A
 – 6-8 # P/A
 – Provide pool of other nutrients
• Chelates nutrients to prevent loss
• Improve soil structure
• Promote organisms that improve nutrient availability
Long term no-till carbon sequestration

<table>
<thead>
<tr>
<th>Depth</th>
<th>Carbon #/a</th>
<th>Long no-till Carbon #/a</th>
<th>Soil Density - now</th>
<th>Ave. Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1"</td>
<td>0.80</td>
<td>1727.14</td>
<td>3.10</td>
<td>6692.65</td>
</tr>
<tr>
<td>1-2</td>
<td>1.10</td>
<td>2374.81</td>
<td>3.10</td>
<td>6692.65</td>
</tr>
<tr>
<td>2-3</td>
<td>1.00</td>
<td>2158.92</td>
<td>3.10</td>
<td>6692.65</td>
</tr>
<tr>
<td>3-4</td>
<td>1.00</td>
<td>2158.92</td>
<td>3.10</td>
<td>6692.65</td>
</tr>
<tr>
<td>4-5</td>
<td>1.00</td>
<td>2158.92</td>
<td>3.10</td>
<td>6692.65</td>
</tr>
<tr>
<td>5-6</td>
<td>0.80</td>
<td>1727.14</td>
<td>3.20</td>
<td>6908.54</td>
</tr>
<tr>
<td>6-7</td>
<td>0.50</td>
<td>1079.46</td>
<td>3.20</td>
<td>6908.54</td>
</tr>
<tr>
<td>7-8</td>
<td>0.50</td>
<td>1079.46</td>
<td>2.90</td>
<td>6260.87</td>
</tr>
<tr>
<td>8-10</td>
<td>0.50</td>
<td>2158.92</td>
<td>2.90</td>
<td>12521.74</td>
</tr>
<tr>
<td>10-12</td>
<td>0.90</td>
<td>3886.06</td>
<td>2.40</td>
<td>10362.82</td>
</tr>
<tr>
<td>12-14</td>
<td>1.10</td>
<td>4749.62</td>
<td>1.70</td>
<td>7340.33</td>
</tr>
</tbody>
</table>

25259.364 83766.1

58506.73 #/a increase in a continuous no-till system