Principles of Deworming

Craig Payne, DVM, MS
Extension Veterinarian
Commercial Agriculture Program
University of Missouri
Why do We Deworm?

• NAHMS data indicates 80% of cow calf operations use dewormers once a year
When I kill parasites, conception rates, weaning rates, carcass qualities, and feed efficiency, improve. It’s our number one technology, more so than anything else, from cow-calf operations to feedlot operations. I get my greatest bang for a dollar investing in killing parasites, because of their effect on feed intake.

Clinical Parasitism

- Diarrhea
- Anemia
- “Pot Bellied” Appearance
- Rough Hair Coats
- “Bottle Jaw”
Subclinical Parasitism

- Cattle appear healthy, but production is suboptimal
- Appetite suppression is the #1 economic impact of subclinical parasitism
- Evidence for induced immunosuppression
Sub-clinical Parasitism

- Poor Performance
- Decreased Milk Production
- Less Pounds of Beef to sell
- Decreased Fertility
- Greater Susceptibility To Other Diseases
When Do We Deworm
What is Strategic Deworming

• Deworming cattle with the intent to not only eliminate the parasites in the animal but also to reduce the parasites on pastures.
Strategic Deworming Requires

• Understanding the parasite and the dynamics of parasite populations
Dynamics of Parasite Populations

• Parasites have two basic functions:
 – Live off the animal they invade
 – Reproduce

• Reproductive goal: produce as many eggs as possible for maximal environmental contamination so their species survives
 – Seasonal survival and infection
Parasite Transmission

Eggs passed in dung and hatch

Adult Parasites

L1→L2→L3

Infected L3 larvae on grass
Seasonality of Parasites

- Parasites in cattle can arrest development so they are not producing eggs when environmental conditions are not favorable.
- In addition, egg development can be delayed.
Egg Development

• Highly dependant upon temperature and moisture
• Eggs passed in the middle of winter will not develop until warm weather in spring
• Eggs passed in the middle of summer or during drought may develop into effective larvae but can’t move away from pat
Egg Development (cont.)

- Eggs shed during the spring and early summer grazing season develop quickly with warmer temps and adequate moisture
Pasture Contamination

Winter Spring Summer Fall
Recommendations

• Cows & bulls
 – If only deworming one time a year, choose the spring time (March 15th)
 – If deworming in the fall do so before favorable parasite conditions return (September 1st)

• Calves
 – Sometimes at 200 – 250 lbs, sometimes not
 – Weaning
Miscellaneous

• Difference in dewormers
 – Classes
 – Pour-on vs. injectable vs. drench
 – Brand name vs. generics

• Parasite resistance
Dewormer Classes

- **Imidazoles** *(Levasole®)* - Levamisole; No L4 effect
- **Benzimidazole** – “the white drenches”
 - TBZ – Oldest, seldom used, no L4 efficacy
 - FBZ – Broad spectrum drench, paste, ‘feed through’, *(Safeguard & Panacur)*
 - ABZ – Broad spectrum + flukicide, *(Valbazen)*
 - OxFZ – Rumen injection, drench *(Synanthic)*
Macrocyclic Lactones

• Endoctocides: End – Ecto – Cide
• Avermectins (Ivomec, Dectomax, Eprinex)
 – Ivermectin: Injectable +/- clorsulon; Pour-on
 – Doramectin: Pour-on, Injectable
 – Eprinomectin: Pour-on, zero withdrawal, dairy OK
 – Generic
• Milbemycins (Cydectin) – Newest molecule
 – Moxidectin: Pour-on, Injectable, No withdrawal,
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Pour-on’s</th>
<th>Injectables</th>
<th>Drenches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convenience</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cost (low to high)</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Product utilization</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Spectrum of activity</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Residual activity</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Pour-on Tips

• Follow label directions
• Pour evenly from between the shoulders to the tail head
• DO NOT
 – Be in a hurry
 – Place product all in one area
 – Apply to the side of the animal
Generic ivermectin pour-ons

Yazwinski, T.A. et. al. 2004

Allocation of animals

• 42 head allocated to 6 treatment groups
• Blocked into 6, 7 head blocks based on EPG

Specifics

• 450 lb stocker calves
• 56 days study conducted from July – Sept & Sept – Nov
• All animals grazed same pasture

Ivomec Pour-On

Top Line

Ivercide

Cooper MEC

Ivermectin Pour-On

Control
Pour-on Ivermectins in 2004

Percent reductions of strongyle egg counts by treatment group at 14 and 56 days post-treatment (both study halves combined)
Average Daily Gain (lbs)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>ADG (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivomec</td>
<td>1.42</td>
</tr>
<tr>
<td>Top Line</td>
<td>1.3</td>
</tr>
<tr>
<td>CooperMec</td>
<td>1.21</td>
</tr>
<tr>
<td>Ivercide</td>
<td>1.36</td>
</tr>
<tr>
<td>Ivermectin PO</td>
<td>1.28</td>
</tr>
<tr>
<td>Control</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Pounds per day

Average Daily Gain
Widespread resistance in cattle nematodes has been confirmed only in New Zealand, with cases also reported in South Africa, England and South America. The wake-up call concerning U.S. cattle occurred three years ago on a stocker operation in Wisconsin intensively grazing Southeast calves.

Is Your Dewormer WORKING?
What is Dewormer Resistance?

• Therapeutic failure of drug when administered at labeled dosage
• For practical purposes – failure of a previously effective product to control worms ≥90% when used at recommended dose rate
• A change in gene frequency in worm population
Development of Drug Resistance

Parents

Drug Treatment

Resistant

Susceptible

Next Generation
How’d this become a problem?

• Our current treatment strategy:
 – Current strategies exploit benefits of treatment and ignore resistance issues
 – Not dosing by BW leads to **Under-dosing**
 • Drug was spilled, Beyond expiration, or Stored improperly
 – We have over used anthelmintics
 • Therapeutic vs. prophylactic
 – We’re not monitoring efficacies
 • Are we using ineffective products?
When to Suspect Resistance

- Failure to gain weight
- Reduced feed conversion efficiency
- Scouring
- Poor reproductive performance
- Anemia & Poor immune responses
- When FEC remain high or clinical signs persist following treatment
 - Know prevalence of resistance in our area