Reproductive Management of Goats 101 (and Beyond)

Dawna L. Voelkl, DVM Dipl ACT
Assistant Teaching Professor, Theriogenology
University of Missouri
College of Veterinary Medicine
Reproductive Management of Goats 101 (and Beyond)

- **Goals**
 - Increase profitability
 - Select appropriate animals for breeding
 - Tailor production schedule to market niches
 - Decrease losses in peri- and post-partum periods
 - Minimize stress and maximize enjoyment
Goats 101: Reproductive Management

• Objectives
 – Normal reproductive physiology of the doe and buck
 – Routine breeding management
 – Artificial insemination
 • Fresh-extended semen
 • Frozen-thawed semen
My Qualifications

• Who I am
 – Veterinarian specializing in reproduction
 – Clinician educator
 – An operator of a small (sheep) farm in Missouri

• Who I am not
 – Nutritionist
 – Expert in parasitic diseases
 – A life-long farmer
Dawna Voelkl

- Born and raised in a small town in western Pennsylvania – NOT on a farm!
- Attended Bryn Mawr College outside of Philadelphia
- Pursued a variety of careers prior to entering veterinary school
- Veterinary education at Cornell
- Residency training at Minnesota and Penn
- Arrived in Missouri in 2006
Normal Reproductive Physiology
Doe

• Sexual maturity: age of attainment multifactorial
 – Season of birth
 – Nutrition
 – Buck exposure
 – Breed
 • European breeds: 6-8 months
 • Pygmy: ~3 months
Normal Reproductive Physiology
Annual Reproductive Cycle

Does are…
Seasonally Polyestrous
Short-day Breeders
Normal Reproductive Physiology
Annual Reproductive Cycle

• Breeding season
 – Spontaneous cyclicity
 – Darkness → pineal melatonin → ↑ GnRH → ↑ HPG axis stimulation → cyclicity
 – September-December
Normal Reproductive Physiology
Annual Reproductive Cycle

• Transition
 – Erratic cyclicity
 – Cyclicity may be induced using buck exposure or pharmacological manipulation
 – Non-breeding to breeding transition
 – Breeding to non-breeding transition: pineal becomes refractory to short-day stimulation
 – August-September; January-March
Normal Reproductive Physiology
Annual Reproductive Cycle

- Non-breeding season (anestrus)
 - No spontaneous cyclicity and not in transition
 - In most individuals, pharmacologic manipulation required for “out of season” breeding
 - Long days/little darkness \rightarrow nadir [melatonin] \rightarrow ↓ GnRH \rightarrow ↓ HPG axis stimulation \rightarrow anestrus
 - April-July
Normal Reproductive Physiology

Estrous Cycle

• Length of cycle

European breeds: 20-21 days

Pygmy goats: 18-24 days
Normal Reproductive Physiology

Estrous Cycle

• Proestrus
 – ~ 1 day
 – Attractive to buck but will not stand to be bred

• Estrus
 – ~ 0.5-2.0 days
 – Physical manifestations
 • Cervical mucus: clear → cloudy → cheesy
 • Vulvar swelling, moistness, hyperemia (inconsistent)
Normal Reproductive Physiology

Estrous Cycle

• Estrus
 – Behavioral signs
 • Interest in buck
 • Stimulated by buck odor ("buck rag")
 • ↑ Vocalization
 • Tail-flagging
 • Attractive to male and will permit breeding
Normal Reproductive Physiology

Estrous Cycle

• Ovulation
 – ~ 0.5-1.5 days after onset of estrus
 – May be hastened by buck exposure
 • Induction of the LH surge
 • Useful as a management tool
Normal Reproductive Physiology

Estrous Cycle

• Metestrus
 – Interval between ceasing to stand for breeding and formation of the CL
 – Variable length

• Diestrus
 – 17-19 days
 – Corpus luteum and progesterone dominate
 – $\text{PGF}_2\alpha$ released on day 17-18
 → luteolysis → doe returns to heat
Normal Reproductive Physiology
Buck

• Age at which bucks reach sexual maturity is highly breed specific
 – Average of ~5 (3-8) months
 – Smaller breeds usually mature earlier
• May be delayed by
 – Overcrowding
 – Early weaning
 – Poor nutrition
 – Being a twin or triplet
• Penile frenulum must break down
Normal Reproductive Physiology

Buck

- Seasonality controversial
 - Bucks in temperate climates collected artificially → no alteration in libido or seminal quality
 - During non-breeding season, bucks in a herd situation may experience decreases in
 - Libido
 - Buck odor
 - Testes size
 - Semen quality
Normal Reproductive Physiology Buck

- Complete cycle of spermatogenesis: 59-64 days
 - Spermatogenesis: ~49 days
 - Epididymal transit and maturation: 10-15 days
- Clinical relevance for breeding soundness evaluations, natural breeding and AI programs
Routine Reproductive Management
Pre-Breeding Recommendations

• Doelings
 – Wait until achieve 65% of mature body weight
 – Optimally, on 3rd or 4th cycle afterwards
 • Successful earlier breeding may require pharmacologic intervention
Routine Reproductive Management
Pre-Breeding Recommendations

• Breeding soundness evaluation of the buck
 – Pre-purchase
 – Prior to using for breeding
 – Poor pregnancy/kidding rate
 – Prior to cryopreserving sperm
The Breeding Soundness Evaluation
What is It?

- A complement of examinations and evaluations that allow us to formulate an opinion as to whether or not a male is capable of breeding and successfully impregnating a given number of females under prevailing industry management conditions.
The Breeding Soundness Evaluation
What is It Not?

• A guarantee of fertility
 – Breeding sound does not guarantee fertility
 – Poor performance on a breeding soundness evaluation does not necessarily mean that a male is sterile or infertile
The Breeding Soundness Evaluation

General Goals

- Selection of genetically superior individuals to promote continued genetic improvement across a group/breed/species
The Breeding Soundness Evaluation

General Goals

• Discrimination against heritable diseases
 – Has resulted in the reduction or elimination of the prevalence of certain diseases in production animals
 – More difficult in working with companion animals, including horses, due to goals other than sustaining an industry
 • Emotional
 • Rapid profit taking
The Breeding Soundness Evaluation

General Components

• History
 – Primarily as it relates to reproductive performance
 – But also general health, musculoskeletal disease/lameness
• Positive identification of animal
• General physical examination (of variable comprehensiveness)
• Examination of the external genitalia
• Indirect examination of the internal genitalia/accessory sex glands
• Semen collection and evaluation
• +/- Evaluation of libido, breeding behavior and serving capacity
• +/- Testing for the presence of infectious and/or genetic diseases
• Collation of data and pronouncement of classification
Breeding Soundness Examination
Buck

• Physical examination
 – External genitalia
• Scrotal circumference
 – NO prescribed standards by breed or age
 – General guidelines by weight for meat breeds
Breeding Soundness Evaluation
Buck

- Electroejaculation performed, but not well tolerated
- Semen collection via artificial vagina preferred method
Breeding Soundness Evaluation

Buck

- Buck artificial vagina (miniature bull AV)
 - Firm outer tube
 - Rubber jacket anchored by bands
 - Rubber liner with adaptor for collection vial
 - Collection vial suspended in warm water bath

- Teaser/mount doe
Breeding Soundness Evaluation
Buck
Breeding Soundness Examination of Buck
Semen Evaluation - Gross

• Visual inspection
 – Opacity
 – Consistency
 – Color
 – +/− Volume

• Olfactory
 – Urine contamination?
Breeding Soundness Examination of Buck Semen Evaluation - Microscopic

- Gross/mass motility
 - Individual motility
 - Concentration
- Progressive motility
 - Individual motility ONLY
Breeding Soundness Examination of Buck
Semen Evaluation - Microscopic

• Gross/mass motility
 – Undiluted
 – Hanging drop
 – Subjective rating
 • Poor, fair, good, very good
Breeding Soundness Examination of Buck Semen Evaluation - Microscopic

- Individual progressive motility
 - Usually requires dilution (physiologic saline, extender)
 - Subjective assessment
 - Minimum
 - 30% in the field
 - 70% in controlled, clinic environment

<table>
<thead>
<tr>
<th>Minimum Recommended Motility is: 30% or FAIR (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Activity (Gross)</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Rapid Swirling</td>
</tr>
<tr>
<td>Slower Swirling</td>
</tr>
<tr>
<td>Generalized Oscillation</td>
</tr>
<tr>
<td>Sporadic Oscillation</td>
</tr>
</tbody>
</table>
Breeding Soundness Examination of Buck Semen Evaluation - Microscopic

• **Sperm morphology**
 – Preparation of sample
 • Eosin-nigrosin stain, light microscopy, 1000x, oil
 • Buffered formyl saline, phase contrast microscopy, 1000x
 – Count ≥100 sperm
Breeding Soundness Examination of Buck
Semen Evaluation - Microscopic

• Sperm morphology
 – List percentages of primary and secondary defects
 – Note any frequently occurring defects
 – Minimum of 70% normal sperm required for satisfactory classification in the buck
Breeding Soundness Examination of Buck

The Bottom Line

- Satisfactory potential breeder
 - Equal/surpass minimum standards
 - Scrotal circumference
 - Sperm motility: 70%
 - Sperm morphology: 80%
 - Be free of defects that would compromise breeding ability
 - Heritable
 - Physical
 - Be free of obvious infectious reproductive disease
 - Absence of the urethral process does not preclude satisfactory classification
- Implies that a buck is capable of impregnating at least 30 does in a 32-day breeding season
Routine Reproductive Management
Breeding

- Mating systems
 - Natural service
 - Pasture
 - In hand
 - Artificial insemination
 - Fresh extended semen
 - Frozen-thawed semen
Natural Mating of the Doe

• Pasture-breeding
 – Meat goat breeds
 – Bucks in with does ≥ 32 d
 – If good libido, breeds 20-30 times/day (not the same doe!!!)

• Hand-mating
 – Dairy goat breeds
 – Breed at first standing, 12 h later, corresponding to mid to late estrus
 – Breed up to 4-6 times/cycle
Routine Reproductive Management
Breeding

- Buck deposits semen into the vagina of the doe
- Ejaculate characteristics
 - Low volume (0.5-2.0 mL)
 - High concentration (1.4-4.0 billion sperm/mL)
Natural Mating of the Doe

• Male: female ratios
 – Buck: doe when females spontaneously cycling: 1:30
 – Buck: doe when does synchronized: 1:7-1:8
Natural Mating of the Doe

- Expected pregnancy rates
 - Per cycle: 65%
 - Seasonal: > 90%
Artificial Insemination
Why Bother?

• Access to superior genetics without having to own expensive buck
 – Usually only genetically superior billies with excellent fertility qualify for frozen semen programs
• Ability to breed to deceased males
• More rapid genetic progress within a herd than with natural mating systems
• Reduces facilities/logistical complications while allowing breeding to multiple different bucks
• Allows for easier out-of-season breeding
• Decreases risk of disease transmission
Artificial Insemination
Requirements

• Method of timing insemination
 – Estrus (heat) detection
 – Estrus synchronization → estrus detection
 – Estrus synchronization → fixed time insemination

• Equipment
 – Vaginal specula with direct light source
 – Pipette and syringe for fresh extended semen or insemination gun for frozen-thawed semen
 – Sterile non-spermicidal lubricant
 – For frozen semen: thawing unit with thermometer, tweezers/forceps, straw cutters, paper towels
 – Record keeping system!!!
Estrus Monitoring

- Estrus detection relevant only when doe is to be bred in-hand or via artificial insemination
- Predominant methods
 - Behavioral observation (+/- intact or teaser buck)
 - Observation of physical changes
- May be used in concert with estrus synchronization
 - Breeding occurs on observed estrus
 - If estrus not observed, does may be bred at a fixed time as dictated by the protocol
- Behavioral signs last 12-48 hours
Estrus Monitoring

Behavior Observation

- Paces along fence near buck
- Stands to be investigated by buck
- Urinates frequently
- Vocalizes
Estrus Monitoring
Behavior Observation

- Lifts and rapidly wags tails
In absence of buck, a rag impregnated with his odor may be used to elicit behavioral signs of estrus in the doe.
Estrus Monitoring
Teaser Animals

• Indications
 – Advance cyclicity and stimulate synchronization during transition
 – Estrus detection in AI programs

• Surgical procedures
 – Penile translocation + vasectomy or epididymectomy

• Medical options
 – Androgenization of wethers (with penile translocation), does, or intersex animals

• Fit with marking harness
Estrus Monitoring

Observation of Physical Changes

- Edema and hyperemia of the vulva in some does
- Mucoid cervical discharge, best seen through speculum
 - Clear
 - Cloudy
- Breed doe when mucus turns from clear to cloudy, corresponding to mid to late estrus

Images courtesy Dr. Cliff Shipley
Artificial Insemination
Fresh Extended Semen

• Most often used by dairy and purebred goat breeders
• Semen collected and extended
• Timing
 – > 12 hours after onset of estrus
 – At time mucus turns from clear to cloudy is optimal
Artificial Insemination
Fresh Extended Semen

- Intra-uterine insemination via vaginal approach
 - Clean perineum
 - Pass vaginal speculum with light source to cranial vagina
 - “Lock” cervical os into speculum
 - Pass AI pipette or gun through speculum and manipulate through rings
 - Deposit semen in cervix or uterine body (if you get there!)

- Dose: 150-200 million PMS
- Expected pregnancy rate for single insemination: 50-85%
Artificial Insemination
Frozen-Thawed Semen

- Not routinely performed
 - Intra-uterine insemination via vaginal approach (as described above)
 - Laparoscopic (as for sheep)

- Buck semen does not generally survive cryopreservation well due to deleterious effects of egg yolk on sperm

- Dose: 20 million PMS

- Expected pregnancy rate for single insemination: 20-90% for laparoscopic intra-uterine insemination

- Requires good estrus synchronization
Artificial Insemination
Fresh Extended Semen

• “Getting there” can be problematic!!!
 – Challenge of “locking” the cervix
 – Cervical rings

<table>
<thead>
<tr>
<th>Table 15.2</th>
<th>Kidding rates in relation to depth of cervical insemination in crossbred Angora does</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of cervical insemination</td>
<td>Fresh diluted semen No. does kidded per inseminated (%)</td>
</tr>
<tr>
<td>up to 1 cm</td>
<td>37/88 (42.0%)</td>
</tr>
<tr>
<td>1.0 to 3.0 cm</td>
<td>74/127 (58.3%)</td>
</tr>
<tr>
<td>into uterus</td>
<td>56/81 (69.1%)</td>
</tr>
</tbody>
</table>
Estrus Synchronization Using Single Dose of PGF$_{2\alpha}$

IN SEASON BREEDING ONLY!!!

14/20 does have CL susceptible to PGF$_{2\alpha}$ → up to 60-70% will demonstrate behavioral estrus 36-40 hours after PGF$_{2\alpha}$ administration
Estrus Synchronization Using Two Doses of PGF$_{2\alpha}$

At the time of the 2nd PGF$_{2\alpha}$ injection 11 days later...

Does that had susceptible CL when given 1st PGF$_{2\alpha}$: 14/20 (70%) will be ~ day 7-9

Does that were in heat when given 1st PGF$_{2\alpha}$: 2/20 (10%) will be ~ day 10-11

Does that were 1-4 days post-ovulation when given 1st PGF$_{2\alpha}$: 4/20 (20%) will be ~ 12-15 day

90-95% of does should be in estrus within 36-40 hours

ALL does should have a susceptible CL!!!

IN SEASON BREEDING ONLY!!!
Estrus Synchronization Using Progestins

More commonly employed for AI and ET programs than PGF$_{2\alpha}$ protocols

For frozen-thawed semen: AI 30 hours after CIDR w/d/54 hours after PGF$_{2\alpha}$ +/- Cystorelin (if no PG600®)
Estrus Synchronization
CIDRs

- Controlled intra-vaginal drug-release device containing 0.3 gram progesterone
- NOT labeled for use in goats in the US
- Preferred by most over feeding of MGA
- Wear gloves when placing
- Trim nylon tails after insertion
Accelerated Kidding Programs

- Advantages
 - Evenly distributed kidding → continuous supply of milk in dairy herds
 - Production of kids to coincide with peak market demand
- Target: doe kids 3 times in 2 years or 5 times in 3 years
- Challenges
 - Out-of-season breeding and, therefore, pharmacologic intervention required
 - Early weaning in meat breeds
 - Nutrition must be excellent for does and bucks