Back to school time is a good time to teach children about money

Janet LaFon

With the arrival of a new school year comes an increased focus on children. Many families are busy buying new clothes, shoes, book bags and school supplies. Then when school starts, there will be more expenses: school lunches, after-school snacks, fees for extracurricular activities – the list goes on and on. It’s obviously a very expensive time of year.

Since school expenses are related to children, this is a great time to begin helping them learn to handle money. From a very early age, children start using money, so why not help them learn to use it wisely?

Begin by taking a look at where children get their money. Usually this is from one of three general sources: cash gifts, earnings and allowances. Each of these can be used to teach children money management skills.

Cash gifts, often received on birthdays and holidays, are “surprise” money and shouldn’t be included as a part of day-to-day expense money. Children should be given leeway to spend it as they wish. However, parents can discuss with children ideas for how the money can be used.

Earnings may be at home or from jobs outside of the home. Many children are paid money for extra work they do around the house. The amount received for various tasks should be agreed upon by the parents and the child. When children are old enough to work outside the home, they still need guidance in money management. Teens should begin developing longer-term financial plans and an adult awareness of money, work, time and their own needs.

Continued on page 4
Heat detection and initial breeding in sheep and goats

Jodie Pennington

Heat detection
Sheep and goats are seasonal breeders and in Missouri the breeding season extends primarily from August to February, with most of the breeding season being September to January although exceptions may occur throughout the year. The trigger for increasing sexual activity is the decrease of daylight as the days shorten going into the fall of the year. A few breeds appear to breed out of the normal season at times and some individual animals breed throughout the year. Meat type goats such as the Pygmy and the Myotonic are more likely to breed out of season than dairy goats. Hair sheep seem to breed out of the “normal” season better than wool sheep. Some wool sheep such as the Dorset, Rambouillet, Polypay, and Finnsheep can breed out of season.

Several factors play an important role in the ability of sheep and goats to breed out of season. On the female side, exposure to the buck increases the chances of a female coming into heat. She also must be in good body condition and be on an adequate level of nutrition. Artificially decreasing the light exposure of the females will bring them into heat about 30 days after the lighting is gradually decreased.

In most cases, the buck or ram is isolated from the females until the desired breeding season in order to consolidate the time that babies are born. With goats, one approach is to separate does from bucks with the bucks in a secure buck pasture. The buck pasture should be far enough from the breeding doe herd, otherwise scent emitted by glands located behind the base of the bucks' horns will induce estrus in does. This is called the "buck effect". Some does will come into heat approximately 7 to 10 days after the introduction of the buck. It is a good strategy to use to naturally synchronize breeding does at the start of the breeding season. A similar approach can be used with sheep.

During the breeding season, goats come into heat or estrus approximately every 18 to 24 days, with an average of 20.5-21 days. Sheep usually have a shorter estrous cycle and come into heat every 17 days, with over 90% having cycles of 14-20 days. Not all animals will show overt external signs of heat on every cycle. Usually only about 50% will show strong visual signs of heat on the first cycle in the fall.

The signs of heat in the doe and ewe are not identical but are similar. However, signs of heat in a ewe are less pronounced than in a doe; does in heat become vocal and some bleat very loudly. Constant tail wagging from side to side is another sign of heat. In addition, the vulva will appear slightly swollen and reddened and the area around the tail may look wet and dirty because of vaginal discharge. Other signs of heat include decreased appetite and an increased frequency of urination. Does in heat also are easily identified if a mature and smelly buck is nearby. They will pace the fence looking for a way to get to the buck or stand close to the fence. Finally, a doe in heat may mount another doe as if she were a buck or let another doe mount her. Signs of heat are greater in mature does as compared to young yearlings. Ewes generally will have less intense but similar signs of heat to the doe. Ewes will crouch and urinate when a ram sniffs her side or genital area. She will wag her tail when the ram sniffs her and will allow the male to mount to breed. Ewes usually do not stand during heat for other females to mount like cattle.

In spite of all these signs, it is still sometimes possible to miss heat in small ruminants. In general, people experiencing most trouble in detecting estrus usually have only one or two goats. If several goats come into heat at the same time, they are more likely to mount more times. In some instances, it may be very useful to run a teaser buck with the does to detect estrus. A vasectomized buck can be used as a teaser male after he is rendered infertile through surgery by cutting the tubes carrying the sperm from the testes to the penis. However, his libido and interest in mating still remains. Animals used to detect estrus can be fitted with a harness containing a crayon that will mark the females in heat when they are mounted. If the herd is checked twice a day for heat, marked females can be separated and mated to the appropriate stud male. With sheep, it may be necessary to use a teaser ram with the ewes to increase the sign of heat. Because sheep do not exhibit strong visual signs of heat, the use of artificial insemination in sheep is more limited than with does (or cattle).

Continued on page 5
Livestock and Prussic Acid poisoning

*John Hobbs*

Sorghums, sorghum-sudangrass crosses and sudangrasses may be poisonous if grazed or fed improperly. The danger of prussic acid poisoning is greatest when livestock graze forage sorghum varieties and crosses, less when they graze sorghum-sudangrass crosses, and least when they graze sudangrasses. The amount of prussic acid is also affected by soil fertility. Soils high in available nitrogen and low in phosphorus increase the potential of prussic acid.

The greatest number of livestock losses occurs when grazing after a period of drought or a series of frosts. Also, young regrowth forage, especially sorghum and sorghum-sudangrass crosses, can be very toxic. The young, dark green growth or regrowth is potentially dangerous to livestock. Shortly after frost, prussic acid release potential increases. However, they can be safely grazed a few weeks after freezing if there is no substantial regrowth. As plants mature and plant height increases, the risk of prussic acid poisoning is reduced. Only during times of stress, such as drought or frost, will toxicity remain high in maturing plants. Since prussic acid poisoning is very fast-acting on high-risk forage, death will occur quickly. Watch animals closely for any signs of toxicity. If there is any question that there may be poison in a stand, secure a good uniform sample from throughout the field, collecting mainly stems randomly, then package them in a good plastic bag and mail or deliver them to a diagnostic laboratory. If possible, he adds, keep the sample cool and, if frozen, be sure it remains frozen until it arrives at the laboratory. However, given the volatile nature of prussic acid, even if the lab analysis indicates a potential for prussic acid poisoning the actual forage may be safe to eat after the stems have become dried, cracked and have allowed the toxic gas to escape. The active compound is hydrocyanic acid (HCN).

Symptoms of HCN poisoning are gasping, staggering, trembling muscles, convulsions, and death resulting from respiratory failure. The mucous membranes of the mouth and eyes may have a blue coloration as evidence of cyanosis. In cases of recovery, there appears to be no permanent effects. Hay maybe dangerous when cut but becomes safe in time through volatilization of the HCN. Hay stored for two or more months gradually losses all its cyanide potential. Another common source of cyanide poisoning for some producers is Wild Black Cherry trees (wild & cultivated) twigs and leaves. After a storm, it is a good idea to walk the perimeter of a pasture and throw the fallen branches from these trees back over the fence.

The following are suggested guideline when grazing sorghum and sudangrass varieties, crosses and hybrids:

- Because sudangrass and sudangrass hybrids pose the lowest prussic acid poisoning potential, they should be planted for pasture use, instead of sorghum and sorghum sudangrass hybrids.
- Do not graze sheep on sudangrass or hybrids until the plants are 12 to 15 inches tall, and for cattle do not graze them until they are 18 to 24 inches tall.
- Sorghum-sudangrass hybrids should be safe to graze at a height of 24 inches or more.
- Sorghum may not be safe to graze until fully headed. Regrowth sorghum should not be grazed until after the plant is completely killed by frost and dried.
- Do not graze sorghum, sorghum-sudangrass hybrids or sudangrasses during or after a drought, or if the plants show visible signs of moisture stress. Have the plants tested for toxicity levels before grazing.
- Do not graze short regrowth forage following hay or silage harvest or following a period of close grazing.
- Do not graze sorghum or sorghum-sudangrass hybrids following a series of light frosts, as the potential for poisoning increases for a short period of time after frosts. Allow 7 to 10 days to pass before grazing after a light frost.
- Do not graze sorghum or sorghum-sudangrass hybrids following a killing frost until the plant has dried, approximately 7 days.
- Do not graze hungry livestock on sorghum or sorghum sudangrass hybrids. Poisoning potential increases with the amount of high- risk forage consumed.

Source O-State
An allowance is a child’s share of family income and should be used as the child chooses on certain defined expenses. With an allowance, children can have some hands-on experience with managing money. They can plan their spending and learn to set some money aside for future use. Allowances can help children learn that money is limited, that income must first cover needs and that the family’s financial situation affects the amount of money each member can use. The allowance should be enough to cover necessary expenses, leaving some money for the child to spend as he or she chooses. When starting an allowance, parents should teach children how to set up a budget or spending plan, keep records and set money aside for savings. Gear the information to the age and ability of each child.

Here are some tips for setting up an allowance:
- The amount should be decided after discussing needs and costs with the child.
- List on paper just what expenses the allowance is to cover.
- Encourage regular saving from the allowance.
- Avoid tying the allowance to specific household chores.
- Set a regular time, such as once a year or every six months, to review together the allowance guidelines and revise as needed.

Advanced Soil Health Workshop
Friday, August 8, 9 am - 3 pm
Thiebaud Auditorium Lamar, MO

This is the second workshop in series but you do not need to have attended the basic workshop at attend the advanced workshop.

Topics include:
- Improving crop nutrient availability through improvement of soil health
- Farming to improve organic matter and soil water retention
- Integration of livestock and cover crops
- Rotational grazing effects on soil health
- Developing cover crop mixes and adjusting rotations to utilize cover crops
- Cost to benefit ratios of management practices to improve soil health
- Soil health testing benefits and procedures:
  (Bring two dried soil samples to analyze, 1 fence row and 1 field)

$10 Registration; MUST RSVP to attend
Make checks payable to: “Soil Health Workshop”,
Send to: Jill Staples, Soil Health Workshop, MU-BREC,
4968 Rangeline Rd. Columbia, MO 65201
Questions: Contact Jill Staples; 573-239-2179 or staplesj@missouri.edu

Brought to you by the University of Missouri, Bradford Research Center; Sponsored by NRCS
Looking to buy or sell hay?

Missouri Department of Agriculture has a website to assist you with either or both of these items.

Visit their website at http://agriculture.mo.gov/abd/haydirectory/.

Area pasture acreage declines

Mark Jenner

The 2012 Census of Agriculture numbers were released by USDA in May 2014 and time to begin summarizing some indicators from the 5-county Ag News & Views area. In the last 15 years, 1997 to 2012, total pastureland in the area has declined by 127,000 acres. This is not news. I have been hearing since I arrived about the conversion of pastureland to cropland. It is not quite this simple. The kind of pastureland that declined the sharpest was hay cropland that was also grazed. Pastureland that is always pastureland increased but not enough to offset the grazed cropland that was lost. Curiously, the acres that left pasture didn’t just end up in cropland. We will continue to unpack area changes in agriculture that are part of the Census of Agriculture.

Continued from page 2 - “Heat detection in sheep and goats”

The duration of estrus in both ewes and does varies (15 -45 hours; 24-72 hours respectively), averaging 30 -36 hours. Within that duration standing heat (the period the doe stands firmly when a buck attempts to mount) lasts approximately 24 hours. Ovulation usually occurs 12 to 36 hours from the onset of standing heat. At the beginning of the heat cycle, the vaginal discharge is clear and colorless. It becomes progressively whiter and more opaque towards the end of standing heat.

Appropriate age or weight at first mating

There are different opinions regarding the appropriate age of mating. One school of thought advocates early mating of ewes/does regardless of what is called ‘critical body weight.’ The earlier breeding will increase the lifetime productivity of the females, despite the fact that some abortions are evident. However, the concept of reaching a ‘critical body weight’ before breeding tends to be favored. According to this concept, animals should attain a certain minimum body weight in order to avoid growth retardation (at least 60% -70% of mature body weight) before they are mated. This decreases reproductive complications (abortion and kidding/lambing problems) that could result from mating small-sized and sexually immature animals. However, larger and older animals at first birthing require additional feed and investment in the replacements.