The Estrous Cycle in Cattle

Physiology and Endocrinology
Overview

• Estrous cycle
• Synchronization and benefits
• Selecting heifers
 – RTS
 – Conditioning
• Products and prices
• Summation
Estrous Cycle

- **Length of the estrous cycle**
 - Average 21 days (range 18 to 24 days)

- **Estrus (standing heat)**
 - 12 to 18 hours (range 8 to 30 hours)

- **Ovulation**
 - Approximately 30 hours after the beginning of standing heat (or 12 to 18 hours after the end of standing heat)
Estrous Cycle

- Major structures on the ovary are ...
 - Follicle ... a blister-like structure containing the egg (referred to as oocyte); produces hormone "estrogen"
 - High amount of estrogen causes "standing heat" and "ovulation"
 - Corpus luteum (referred to as "CL") ... looks like a hard yellow structure and produces hormone "progesterone" that is responsible for maintenance of pregnancy
Follicle development occurs as a wave-like pattern consisting of “Recruitment”, “Selection”, “Growth”, “Dominance”, and “Regression” phases.

Usually 2 to 4 follicular waves occur during the estrous cycle in cattle.
FSH precedes recruitment of follicles (causes follicles to start growing)

FSH is the same hormone used for superovulation and embryo transfer in cattle
Follicle Development
Luteinizing Hormone (LH)

- LH promotes further follicle growth and maturation of egg
Follicle Development and Ovulation
Luteinizing Hormone (LH) and Estrogen

- LH stimulates follicle growth and a growing follicle produces high levels of estrogen.
- High levels of estrogen, in turn, cause estrus and surge release of LH that triggers ovulation.
Follicle Development During the Estrous Cycle

Example for 3 Follicular Waves

- Length of the estrous cycle in cattle with 3 follicular waves is typically 20 to 24 days
Length of the estrous cycle in cattle with 2 follicular waves is typically 18 to 20 days, slightly shorter than the estrous cycle with 3 follicular waves.
Endocrinology During the Estrous Cycle
Follicle Stimulating Hormone (FSH)

Example shown for cattle having 3 follicular waves during a 21-day estrous cycle
Endocrinology During the Estrous Cycle
Luteinizing Hormone (LH)

Example shown for cattle having 3 follicular waves during a 21-day estrous cycle
Example shown for cattle having 3 follicular waves during a 21-day estrous cycle
Corpus luteum develops from the ovulated follicle and takes approximately 10 days to reach mature size.
Corpus luteum produces progesterone

Progesterone is responsible for maintenance of pregnancy after conception occurs
Late in the estrous cycle, uterus produces PG which causes regression of corpus luteum.

PG is the same or similar hormone in “Lutalyse®”, “Estrumate®”, “ProstaMate®”, and “In Synch®”.
Presence of embryo blocks uterus to produce PG late in the estrous cycle which causes maintenance of corpus luteum and production of progesterone for pregnancy.
Progesterone regulates secretion pattern of LH pulses and hence, follicular development.
Endocrinology of the Estrous Cycle

- Relationships among estrogen, progesterone, and PG during the 21-day estrous cycle
Physiology and Endocrinology of the Estrous Cycle

- Relationships among structural and hormonal changes during the 21-day estrous cycle (example shown for cattle having 3 follicular waves)
Estrus Synchronization
Effective Estrus Synchronization Programs

- Shorten the AI breeding season
 - Cows or heifers are in estrus during a predictable interval that facilitates AI
 - Reduce time and labor required to detect estrus

- Result in more cows and heifers becoming pregnant early during the breeding season
 - Progestin-based programs can induce estrous cyclicity in anestrous cows and prepubertal heifers (For example: MGA, or CIDR)*

* Progestins are progesterone-like compounds that act like progesterone
Effective Estrus Synchronization Programs

- Result in older and heavier calves at weaning
- Will have beneficial effects on the next breeding season
 - More cows and heifers calve early
 - More days postpartum at the next breeding season
- Replacement heifers will be older
Effective Estrus Synchronization Programs

- Consider what happens during a restricted breeding season, based on the average 21-day estrous cycle:

 - If cows or heifers are cycling when an estrus synchronization treatment is implemented and they exhibit estrus during the synchronized period, they would have 3 opportunities to conceive during a 45-day period or 4 opportunities during a 65-day period.

 - If cows or heifers are cycling but no estrus synchronization treatment is implemented, then they have only 2 (45-day) or 3 (65-day) opportunities to conceive.

 - If cows or heifers are not cycling at the beginning of the breeding season, they have even less opportunity to conceive.
Points to Consider When Using Estrus Synchronization

- Estrus synchronization is never a substitute for:
 - Nutrition
 - Herd health
 - Proper management

- Estrus synchronization should not be used as a crutch for poor management

- When administered appropriately, estrus synchronization is an effective reproductive management tool that can be used to facilitate AI
Points to Consider When Using Estrus Synchronization

- Determine which females would make the best candidates before beginning estrus synchronization
- Successful application of estrus synchronization is easier to accomplish with heifers (no calves to work with)
Selecting Heifers for Estrus Synchronization

- Heifers should be of adequate age (cycling or close to reaching puberty)
- Heifers should be of adequate weight
 - Developed to 65% of projected mature weight
- Do you know the mature weight of your cows?
- Utilize reproductive tract score (RTS) to assess reproductive maturity
Timing of Puberty in Heifers

- Target weight: Heifers reach puberty at approximately 65% of their mature body weight
- Determine your desired weight at breeding, calculate the gain needed to meet that weight, and feed to meet it
Management Considerations for Heifers

- DO NOT use growth promoting implants in replacement heifers
- Implants may disrupt or impair normal development of reproductive organs
 - Developing uterus is especially sensitive to growth promoting implants
Management Considerations for Heifers

- Reproductive Tract Scores (RTS) are determined by rectal palpation of the ovaries and uterus.

- The RTS should be performed approximately 6 to 8 weeks prior to breeding season and/or approximately 2 weeks prior to beginning an estrus synchronization treatment.
<table>
<thead>
<tr>
<th>RTS</th>
<th>Uterine horns</th>
<th>Ovarian Measurement (mm)</th>
<th>Ovarian Structures</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Immature</td>
<td>Length: 15</td>
<td>Height: 10</td>
<td>Width: 8</td>
</tr>
<tr>
<td></td>
<td>Uterine horns No tone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20-25 mm diameter</td>
<td>Length: 18</td>
<td>Height: 12</td>
<td>Width: 10</td>
</tr>
<tr>
<td></td>
<td>Slight tone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20-25 mm diameter</td>
<td>Length: 22</td>
<td>Height: 15</td>
<td>Width: 10</td>
</tr>
<tr>
<td></td>
<td>Good tone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>> 30 mm diameter</td>
<td>Length: 30</td>
<td>Height: 16</td>
<td>Width: 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>> 30 mm diameter</td>
<td>Length: > 32</td>
<td>Height: 20</td>
<td>Width: 15</td>
</tr>
</tbody>
</table>

Adapted from Anderson et al., 1991
RTS Measurements

<table>
<thead>
<tr>
<th>RTS</th>
<th>No. of Heifers</th>
<th>Weight (lb)</th>
<th>Pelvic Height (cm)</th>
<th>Pelvic Width (cm)</th>
<th>Pelvic Area (cm²)</th>
<th>Estrous Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61</td>
<td>594<sup>a</sup></td>
<td>13.9<sup>a</sup></td>
<td>10.9<sup>a</sup></td>
<td>152<sup>a</sup></td>
<td>54 %<sup>a</sup></td>
</tr>
<tr>
<td>2</td>
<td>278</td>
<td>620<sup>b</sup></td>
<td>14.1<sup>a</sup></td>
<td>11.2<sup>a</sup></td>
<td>158<sup>a</sup></td>
<td>66 %<sup>b</sup></td>
</tr>
<tr>
<td>3</td>
<td>1103</td>
<td>697<sup>c</sup></td>
<td>14.5<sup>b</sup></td>
<td>11.4<sup>b</sup></td>
<td>166<sup>b</sup></td>
<td>76 %<sup>c</sup></td>
</tr>
<tr>
<td>4</td>
<td>494</td>
<td>733<sup>d</sup></td>
<td>14.7<sup>c</sup></td>
<td>11.7<sup>c</sup></td>
<td>172<sup>c</sup></td>
<td>83 %<sup>d</sup></td>
</tr>
<tr>
<td>5</td>
<td>728</td>
<td>755<sup>d</sup></td>
<td>14.7<sup>c</sup></td>
<td>11.7<sup>c</sup></td>
<td>172<sup>c</sup></td>
<td>86 %<sup>d</sup></td>
</tr>
</tbody>
</table>

Note the relationship between increasing RTS, weight, and skeletal development determined by pelvic area.

Estrous response increased among heifers that were more reproductively mature at the beginning of estrus synchronization and/or breeding season.

Adapted from Patterson et al., 1999a
Relationship Between RTS and Pregnancy

<table>
<thead>
<tr>
<th>RTS</th>
<th>No. of Heifers</th>
<th>Pregnant</th>
<th>Open</th>
<th>Pregnancy Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53</td>
<td>31</td>
<td>22</td>
<td>58 %</td>
</tr>
<tr>
<td>2</td>
<td>762</td>
<td>610</td>
<td>152</td>
<td>80 %</td>
</tr>
<tr>
<td>3</td>
<td>3458</td>
<td>3014</td>
<td>444</td>
<td>87 %</td>
</tr>
<tr>
<td>4</td>
<td>3398</td>
<td>3006</td>
<td>392</td>
<td>89 %</td>
</tr>
<tr>
<td>5</td>
<td>2613</td>
<td>2331</td>
<td>282</td>
<td>89 %</td>
</tr>
</tbody>
</table>

Higher pregnancy rates at the end of the breeding season were achieved among heifers that were more reproductively mature at the beginning of estrus synchronization and/or breeding season.

Randle et al., 2001
Prepubertal Anestrus

- Many factors involved
 - Timing of puberty is controlled by ...
 - Age
 - Weight
 - Breed
 - Season

- Develop heifers to approximately 65% of mature weight by the breeding season
- This will help them to attain puberty at the right time
Nutritional Anestrus

- Nutritionally stressed cattle will experience delays in return to estrus after calving
- Can be “managed” through
 - Improvement in BODY CONDITION
 - Proper feeding management
Postpartum Anestrus
Induction of Estrous Cyclicity

- Bull exposure
 - Prepubertal heifers
 Exposure of prepubertal heifers to sterile bulls (for example, vasectomized, epididyectomized ... etc) for 60 to 80 days before the breeding season may hasten the onset of puberty (ranges from no effect to 70 days earlier)

[Izard and Vandenbergh, 1982; Berardinelli et al., 1978; MacMillan et al., 1979; Roberson et al., 1991]

- This procedure also shortens the postpartum period in anestrous cows however my concentration is on heifers

[Foote, 1974; MacMillan et al., 1979; Zalesky et al., 1984; Gifford et al., 1989]
Products Currently Utilized in Protocols to Synchronize Estrus

*** Price may vary depending on suppliers ***

- Prostaglandin F$_{2\alpha}$ (PG)
 - Lutalyse®, Estrumate®, ProstaMate®, In Synch®
 - Approximate cost is $3.00/dose (range $2.50-$4.00)

- Gonadotropin-Releasing Hormone (GnRH)
 - Cystorelin®, Factrel®, Fertagyl®
 - Approximate cost is $5.00/dose (range $4.00-$6.00)

- Melengestrol Acetate (MGA® Premix)
 - Approximate cost ranges $0.14-$0.40/day/head including carrier
 - 14 days ($2.00-$5.60/head) or 7 days ($1.00-$2.80/head)

- EAZI-BREED™ CIDR® Cattle Insert (CIDR)
 - Approximate cost is $8.00 (range $8.00-$10.00)

- Syncro-Mate-B® (off the market)
Prostaglandin $F_{2\alpha}$ (PG)
Prostaglandin $\text{F}_2\alpha$ (PG)

- PG causes CL regression
- No effect on anestrous cattle
- No induction of estrous cyclicity

 ... No Jump-start

- Only effective during Days 6 (6 days after estrus) to 16 of the estrous cycle
Prostaglandin F$_{2\alpha}$ (PG)

PG regresses CL

Day of the Estrous Cycle
Estrous Response
Double Injection PG Program
Example shown is 14-day interval for PG injections

Modified from Stevenson et al., 2000
Single or Double Injection PG Programs

$3.00 or $6.00 ($3.00/one dose)

- Advantages:
 - Cost effective ($3.00 or $6.00)
 - Easy to use
 - Good fertility
Disadvantages:

- No effect between days 0 to 4 or 16 to 21 of the estrous cycle
- Improved effectiveness after day 10 of the estrous cycle
- Require heifers and cows to have CL (cycling)
- Require extensive estrus detection (minimum 7 days)
- No induction of estrous cyclicity (No Jump-start)

Single or Double Injection PG Programs

$3.00 or $6.00 ($3.00/one dose)
Possible Outcomes
Single or Double Injection PG Programs

- Estrous response:
 - Varies depending on the degree of estrous cyclicity in the herd and the stage of the estrous cycle of an individual animal
 - Single injection of PG ... up to 40 to 60 %
 - Double injection of PG ... up to 50 to 80 %

- Timing of estrus:
 - Before PG injection to 7 to 10 days after PG injection
 - Peak response ranges from 48 to 96 hours after PG injection
Melengestrol Acetate
(MGA®)

MGA is a registered trademark of Pfizer Animal Health
Melengestrol Acetate (MGA)

- Orally active progestin, administered as a feed additive
- Blocks estrus and ovulation
 - Acts similar to progesterone from CL
- MGA can induce estrous cyclicity in peripubertal (within 30 days to attain puberty) heifers and postpartum anestrous cows
- Currently, MGA and CIDR are the only progestins commercially available in the U.S.

Patterson et al., 1989
Intake Considerations

What type of carrier to use?

- Mix with grain source (example: cracked or ground corn)
 For example: MGA with ground corn ($0.15/day/head)
- Top dressing does not work well
- If cattle are on lush pasture, remove salt from pasture and include salt in MGA carrier
 0.5 oz. Salt per cow and MGA in carrier ($0.30/day/head)
- Pellet form (very palatable)
 For example: MFA Cattle Charge® with MGA ($0.40/day/head)
Intake Considerations

- Need to provide adequate bunk space (18 inches per heifer, and 24 inches per cow)
- Make sure cattle come to bunk before start of feeding MGA
 - If cattle are not used to bunk feeding, 1-2 weeks of warm-up bunk feeding is recommended
- MGA should be fed one time per day at approximately the same time every day
- Separate heifers from cows for MGA feeding
 - Late-term pregnant cows should not be fed MGA
• MGA can be combined with PG to improve results
Adding the PG injection to the MGA program results in a much tighter synchronization of estrus.

Adapted from Patterson et al., 2000
Management Considerations
Why Not Introduce Bulls Right After MGA Withdrawal?

If bulls were introduced to the herd right after MGA withdrawal, they may be overworked during the less fertile estrous period after MGA withdrawal, but before cows express fertile estrus.
Natural Service with MGA Program

$2.00-$5.60 (MGA cost)

- Advantages:
 - Easy to use
 - Shortens the next calving season *(ideal way to start AI program in the following year)*
 - MGA can induce estrous cyclicity in postpartum anestrous cows *(Jump-start)*
 - Does not require cattle to be handled
Natural Service with MGA Program

$2.00-$5.60 (MGA cost)

- Disadvantages:
 - Must have adequate bull-power
 - At least 1:15 to 20 bull:female ratio for 2-year or older bulls
 - Yearling bulls ... consider decreasing the bull:female ratio
 - Resulting calves may be of inferior quality and provide less genetic improvement for the herd compared to AI calves (depends on the genetic quality of the clean-up bulls)
Summation

• Lots of programs
 – Many combinations of programs
• Many prices
• The numbers definitely show results
 – Earlier calving season
 – More time to return to Estrus
 – Increased opportunity to become pregnant
• However due to expense and labor intensity this is not for everyone
Bibliography

• “Guide to Estrus Synchronization of Beef Cattle” CD
 Freddie N. Kojima, Ph.D. and David J. Patterson, Ph.D.
 Department of Animal Sciences
 University of Missouri
 Columbia, MO 65211